(本題12分)
如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3
,AB⊥AD,∠A1AB=∠A1AD=
。(1)求證:頂點(diǎn)A1在底面ABCD上的射影O在∠BAD
的平分線上;
(2)求這個(gè)平行六面體的體積。
圖1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,給出四棱錐P-ABCD的直觀圖及其三視圖
(1)、據(jù)此說明四棱錐P-ABCD具有的特征及已知條件;
(2)、由你給出的特征及條件證明:面PAD⊥面PCD
(3)、若PC中點(diǎn)為E,求直線AE與面PCD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在半徑為13的球面上有A,B,C三點(diǎn),AB=6,BC=8,CA=10,求過A,B,C三點(diǎn)的截面與球心的距離。(10分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知四棱錐P—ABCD的三視圖如右圖所示,
其中正(主)視圖與側(cè)(左)視為直角三角形,俯視圖為正方形。 (1)求四棱錐P—ABCD的體積;
(2)若E是側(cè)棱
上的動(dòng)點(diǎn)。問:不論點(diǎn)E在PA的
任何位置上,是否都有?
請(qǐng)證明你的結(jié)論?
(3)求二面角D—PA—B的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖所示,平面PAD⊥平面ABCD,ABCD為正方形,PA⊥AD,且PA=AD=2,E,F,G分別是線段PA,PD,CD的中點(diǎn)。
(1)求證:BC//平面EFG;
(2)求三棱錐E—AFG的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若空間中四條直線兩兩不同的直線、
、
、
,滿足
,
,
,則下列結(jié)論一定正確的是( )
A.![]() | B.![]() |
C.![]() ![]() | D.![]() ![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
一個(gè)四棱錐的三視圖如圖所示:
(1)根據(jù)圖中標(biāo)出的尺寸畫出直觀圖(不要求寫畫法步驟);
(2)求三棱錐A-PDC的體積;高考資源網(wǎng)
(3)試在PB上求點(diǎn)M,使得CM∥平面PDA并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(9分)已知,
為
上的點(diǎn).
(1)當(dāng)為
中點(diǎn)時(shí),求證
;
(2)當(dāng)二面角—
—
的大小為
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com