精英家教網 > 高中數學 > 題目詳情
下述函數中,在(-∞,0]內為增函數的是( 。
A、y=x2-2
B、y=
3x+4
x+2
C、y=1+2x
D、y=-(x+2)2
考點:函數單調性的性質
專題:函數的性質及應用
分析:根據二次函數的單調性判斷A、D不對,由一次函數的單調性判斷C不對,根據復合函數和反比例函數的單調性判斷B對.
解答: 解:A、因為y=x2-2在(-∞,0)上為減函數,所以A不對;
B、因為y=3-
2
x+2
在(-∞,-2)上為增函數,在(-2,+∞)上是增函數,所以B對;
C、∵y=在(-∞,+∞)上為減函數,故C不正確;
D、∵y=-(x+2)2的對稱軸是x=-2,∴在(-∞,-2)上為增函數,在(-2,+∞)上為減函數,故D不對.
故選B.
點評:本題考查了函數的單調性的判斷,主要利用了二次函數的單調性、反比例函數的單調性、以及復合函數和冪函數的單調性進行判斷.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x∈N|0<x<3},B={x|2x-1>1},則A∩B=(  )
A、∅B、{1}
C、{2}D、{1,2}

查看答案和解析>>

科目:高中數學 來源: 題型:

以下命題正確的個數為( 。
①命題“若x2>1,則x>1”的否命題為“若x2≤1,則x≤1”;
②命題“若α>β,則tanα>tanβ”的逆命題為真命題;
③命題“?x∈R,使得x2+x+1<0”的否定是“?x∈R;都有x2+x+1≥0”;
④“x>1”是“x2+x-2<0”的充分不必要條件.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(1)證明:CM∥平面BDF;
(2)求四面體DEFB的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

設A={1,2},B={x|x⊆A}若用列舉法表示,則集合B是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和是Sn,且Sn+
1
2
an=1(n∈N*).
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=-3log3
an
2
+1
(n∈N*),求
1
b1b2
+
1
b2b3
+…+
1
b20b21
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

命題p:實數x滿足x2-4ax+3a2<0(其中a>0),命題q:實數x滿足
|x-1|≤2
x+3
x-2
>0

(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=2|log2x|+1的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數學 來源: 題型:

若四面體的各棱長是1或2,且該四面體不是正四面體,則其體積不可能是( 。
A、
11
12
B、
14
12
C、
11
6
D、
3
3

查看答案和解析>>

同步練習冊答案