已知點為拋物線的焦點,為原點,點是拋物線準線上一動點,點在拋物線上,且,則的最小值為  ( )
A.6B.C.D.
C
因為|AF|=4,所以,由于拋物線的對稱性,不妨令A(yù)(-2,4),則O關(guān)于準線x=2的對稱點坐標為M(4,0),由題意知
,當(dāng)A、P、M三點共線時,取得最小值,最小值為|AM|=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的方程,則離心率為                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面內(nèi)有一長度為2的線段和一動點,若滿足,則的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點與平面上兩定點、連線的斜率的積為定
.
(1)求動點的軌跡方程;(2)設(shè)直線與曲線交于、兩點,當(dāng)||=時,求直線的方程. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓上的任意一點到它兩個焦點的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點,且線段的中點不在圓內(nèi),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B的坐標分別是,直線AM,BM相交于點M,且它們的斜率之和是2,則點M的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,已知直線l:y=-1,定點F(0,1),過平面內(nèi)動點P作PQ丄l于Q點,且
(I )求動點P的軌跡E的方程;
(II)過點P作圓的兩條切線,分別交x軸于點B、C,當(dāng)點P的縱坐標y0>4時,試用y0表示線段BC的長,并求ΔPBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與雙曲線有相同的焦點,是兩曲線的一個交點,則 等于    (    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案