15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x≥1}\end{array}\right.$,若f(a)=f(b)(a≠b),則函數(shù)g(x)=$\left\{\begin{array}{l}{{x}^{2}+2a+4,x≤0}\\{\frac{a{x}^{2}+b}{x},x>0}\end{array}\right.$的最小值為2.

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)由f(a)=f(b)得ab=1,然后結(jié)合一元二次函數(shù)和基本不等式的性質(zhì)進行求解即可.

解答 解:若f(a)=f(b)(a≠b),
不妨設a<b,
則0<a<1,b>1,
則-lna=lnb,即lna+lnb=lnab=0,
即ab=1,則b=$\frac{1}{a}$,
則當x≤0時,g(x)=x2+2a+4,為減函數(shù),則函數(shù)的最小值為g(0)=2a+4>4,
當x>0時,g(x)=$\frac{a{x}^{2}+b}{x}$=ax+$\frac{x}$=ax+$\frac{1}{ax}$≥2$\sqrt{ax•\frac{1}{ax}}$=2,
當且僅當ax=$\frac{1}{ax}$,即x=$\frac{1}{a}$時,取等號,
∴函數(shù)的最小值為2,
故答案為:2.

點評 本題主要考查函數(shù)最值的求解和應用,根據(jù)對數(shù)的運算法則和性質(zhì)求出ab=1,以及利用基本不等式以及一元二次函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,$\overrightarrow a$與$\overrightarrow b$的夾角為120°,$\overrightarrow c$=$\overrightarrow a$+2$\overrightarrow b$,$\overrightarrow d$=2$\overrightarrow a$+k$\overrightarrow b$,當實數(shù)k取何值時:
(1)$\overrightarrow c⊥\overrightarrow d$.
(2)$\overrightarrow c∥\overrightarrow d$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.把下列各弧度化成度:
(1)-$\frac{7}{6}$π;
(2)-$\frac{10}{3}$π;
(3)1.4;
(4)$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-(1+a)x2-x.
(1)討論 函數(shù)f(x)的單調(diào)性;
(2)當a<1時,證明:對任意的x∈(0,+∞),有f(x)<-$\frac{lnx}{x}$-(1+a)x2-a+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=$\frac{lnx}{1+x}$-lnx在x=x0處取得最大值,則下列結(jié)論正確的是(  )
A.f(x0)<x0B.f(x0)=x0C.f(x0)>x0D.f(x0)=-x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知雙曲線x2-my2=1的離心率為3,則其漸近線與圓(x-3)2+y2=7的位置關(guān)系為(  )
A.相交B.相離C.相切D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.定義在R上的偶函數(shù)f(x)的導函數(shù)為f′(x),若對任意的實數(shù)x,都有2f(x)+xf′(x)<2恒成立,則使x2f(x)-f(1)<x2-1成立的實數(shù)x的取值范圍為( 。
A.{x|x≠±1}B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若直角坐標平面內(nèi)兩點P,Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點對稱,則對稱點(P,Q)是函數(shù)y=f(x)的一個“伙伴點組”(點對(P,Q)與(Q,P)看作同一個“伙伴點組”).則下列函數(shù)中,恰有兩個“伙伴點組”的函數(shù)是②③(填空寫所有正確選項的序號)
①y=$\left\{\begin{array}{l}{{x}^{3},x>0}\\{-x-1,x<0}\end{array}\right.$;②y=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x>0}\\{-ln|x|,x<0}\end{array}\right.$;③y=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$;④y=$\left\{\begin{array}{l}{3x+\frac{1}{2},x>0}\\{{e}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函數(shù).
(1)求t的值;
(2)求f(x)的反函數(shù)f-1(x);
(3)對于任意的0<m<2,解不等式:${f^{-1}}(x)>{log_3}\frac{1+x}{m}$.

查看答案和解析>>

同步練習冊答案