4.把下列各弧度化成度:
(1)-$\frac{7}{6}$π;
(2)-$\frac{10}{3}$π;
(3)1.4;
(4)$\frac{2}{3}$.

分析 直接由關(guān)系式π=180°進(jìn)行角度與弧度的互化,1rad≈57.30°

解答 解:(1)-$\frac{7}{6}$π×$\frac{180°}{π}$=-210°,
(2)-$\frac{10}{3}$π×$\frac{180°}{π}$=-600°,
(3)1.4×$\frac{180°}{π}$≈1.4×57.30°=80.22°
(4)$\frac{2}{3}$×$\frac{180°}{π}$≈$\frac{2}{3}×$57.30°=38.2°

點(diǎn)評(píng) 本題考查了角度與弧度的互化,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,則“a>0”是“|2a+1|>1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,|$\overrightarrow{a}$|與|$\overrightarrow$|的夾角為120°,求
(1)$\overrightarrow{a}•\overrightarrow$
(2)${\overrightarrow{a}}^{2}$-${\overrightarrow}^{2}$
(3)(2$\overrightarrow{a}-\overrightarrow$)($\overrightarrow{a}+3\overrightarrow$)
(4)|$\overrightarrow{a}+\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=-3cos(2x-$\frac{π}{7}$);
(2)y=($\frac{1}{3}$)lgcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=sinωx的周期為π,則ω=±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,-2≤x≤-1}\\{ln(x+2),-1<x≤2}\end{array}\right.$,若g(x)=f(x)-a(x+2)的圖象與x軸有3個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{3e}$)C.[$\frac{ln2}{2}$,$\frac{1}{e}$)D.[$\frac{2ln2}{3}$,$\frac{1}{3e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知sinα•cosβ=1,那么sin(α+β)等于(  )
A.0B.-1C.±1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x≥1}\end{array}\right.$,若f(a)=f(b)(a≠b),則函數(shù)g(x)=$\left\{\begin{array}{l}{{x}^{2}+2a+4,x≤0}\\{\frac{a{x}^{2}+b}{x},x>0}\end{array}\right.$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖所示的程序框圖,輸出結(jié)果中s=(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案