記集合A={(x,y)|x2+y216}和集合B={(x,y)|x+y-40,x0,y0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2的概率為(  )

(A) (B) (C) (D)

 

A

【解析】如圖,

區(qū)域Ω1為圓心在原點(diǎn),半徑為4的圓,區(qū)域Ω2為等腰直角三角形,腰長(zhǎng)為4,所以P===.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十六第十章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)(x-)6的展開式中x3的系數(shù)為A,二項(xiàng)式系數(shù)為B,AB=(  )

(A)4 (B)-4 (C)26 (D)-26

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十二第九章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為me,眾數(shù)為mo,平均值為,(  )

(A)me=mo= (B)me=mo<

(C)me<mo< (D)mo<me<

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十九第十章第六節(jié)練習(xí)卷(解析版) 題型:填空題

如圖所示是用模擬方法估計(jì)圓周率π值的程序框圖,P表示估計(jì)結(jié)果,則圖中空白框內(nèi)應(yīng)填入    .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十九第十章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

在棱長(zhǎng)為2的正方體ABCD -A1B1C1D1,點(diǎn)O為底面ABCD的中心,在正方體ABCD-A1B1C1D1內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于1的概率為(  )

(A) (B)1-

(C) (D)1-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十七第十章第四節(jié)練習(xí)卷(解析版) 題型:填空題

盒子中共有除顏色不同其他均相同的3只紅球,1只黃球,若從中隨機(jī)取出兩只球,則它們顏色不同的概率為     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十七第十章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

同時(shí)拋擲三枚均勻的硬幣,出現(xiàn)一枚正面、兩枚反面的概率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)六十一第九章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

某連隊(duì)身高符合國(guó)慶閱兵標(biāo)準(zhǔn)的士兵共有45,其中18歲~19歲的士兵有15,20歲~22歲的士兵有20,23歲以上的士兵有10,若該連隊(duì)有9個(gè)參加閱兵的名額,如果按年齡分層選派士兵,那么,該連隊(duì)年齡在23歲以上的士兵參加閱兵的人數(shù)為(  )

(A)5 (B)4 (C)3 (D)2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)C1,

(1)求橢圓C1的方程.

(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案