在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上,
(1)求橢圓C1的方程.
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
(1) +y2=1 (2) y=x+,y=-x-
【解析】(1)由題意得c=1,b=1,a==,
∴橢圓C1的方程為+y2=1.
(2)由題意得直線的斜率一定存在且不為0,設(shè)直線l的方程為y=kx+m.
因為橢圓C1的方程為+y2=1,
∴
消去y得(1+2k2)x2+4kmx+2m2-2=0.
直線l與橢圓C1相切,
∴Δ=16k2m2-4(2k2+1)(2m2-2)=0.
即2k2-m2+1=0. ①
直線l與拋物線C2:y2=4x相切,則
消去y得k2x2+(2km-4)x+m2=0.
∴Δ=(2km-4)2-4k2m2=0,即km=1. ②
由①②解得k=,m=;k=-,m=-.
所以直線l的方程y=x+,y=-x-.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)六十九第十章第六節(jié)練習(xí)卷(解析版) 題型:選擇題
記集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點M(x,y),則點M落在區(qū)域Ω2的概率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題
已知a,b,x,y均為正數(shù)且>,x>y.
求證:>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
直線xcos140°+ysin140°=0的傾斜角是( )
(A)40° (B)50° (C)130° (D)140°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知直線l:ax+y-2-a=0在x軸和y軸上的截距互為相反數(shù),則a的值是( )
(A)1 (B)-1
(C)-2或-1 (D)-2或1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,過B作斜率為1的直線交橢圓于點M,點P在y軸上,且PM∥x軸,·=9,若點P的坐標(biāo)為(0,t),則t的取值范圍是( )
(A)0<t<3 (B)0<t≤3
(C)0<t< (D)0<t≤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:解答題
已知直線y=-2上有一個動點Q,過點Q作直線l1垂直于x軸,動點P在l1上,且滿足OP⊥OQ(O為坐標(biāo)原點),記點P的軌跡為C.
(1)求曲線C的方程.
(2)若直線l2是曲線C的一條切線,當(dāng)點(0,2)到直線l2的距離最短時,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:填空題
已知橢圓+=1(a>b>0)的右頂點為A(1,0),過其焦點且垂直長軸的弦長為1,則橢圓方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題
如圖,已知橢圓C:+y2=1(a>1)的上頂點為A,離心率為,若不過點A的動直線l與橢圓C相交于P,Q兩點,且·=0.
(1)求橢圓C的方程.
(2)求證:直線l過定點,并求出該定點N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com