分析 由sinA+sinBcosC=0,利用三角形內(nèi)角和定理與誘導(dǎo)公式可得:sin(B+C)=-sinBcosC,展開化為:2sinBcosC=-cosBsinC,因此2tanB=-tanC,由tanA=-tan(B+C)展開代入利用基本不等式的性質(zhì)即可得出答案.
解答 解:由sinA+sinBcosC=0,
得$\frac{sinA}{sinB}=-cosC>0$,
∴C為鈍角,A,B為銳角且sinA=-sinBcosC.
又sinA=sin(B+C),
∴sin(B+C)=-sinBcosC,
即sinBcosC+cosBsinC=-sinBcosC,
∴2sinBcosC=-cosBsinC
∴2tanB=-tanC
∴tanA=-tan(B+C)
=$\frac{-(tanB+tanC)}{1-tanBtanC}$=$\frac{tanB}{1+2ta{n}^{2}B}$
=$\frac{1}{2tanB+\frac{1}{tanB}}$,
∵tanB>0,根據(jù)均值定理,$2tanB+\frac{1}{tanB}≥2\sqrt{2tanB•\frac{1}{tanB}}=2\sqrt{2}$,
∴$\frac{1}{2tanB+\frac{1}{tanB}}≤\frac{\sqrt{2}}{4}$,當(dāng)且僅當(dāng)$tanB=\frac{\sqrt{2}}{2}$時(shí)取等號(hào).
∴tanA的最大值為$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查了三角形內(nèi)角和定理、誘導(dǎo)公式、和差公式、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{27}$ | D. | $\frac{2}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$或-1 | B. | 2 或$\frac{1}{2}$ | C. | 2 或1 | D. | 2 或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com