19.已知$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}$•$\overrightarrow$=0,若向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-($\overrightarrow{a}$$+\overrightarrow$)|=|$\overrightarrow{a}$$-\overrightarrow$|,則|$\overrightarrow{c}$|的最大值是2$\sqrt{2}$.

分析 通過(guò)建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算和圓的方程及數(shù)形結(jié)合即可得出.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}$•$\overrightarrow$=0,
∴可設(shè)$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(x,y),
∴|$\overrightarrow{c}$-($\overrightarrow{a}$$+\overrightarrow$)|=|$\overrightarrow{a}$$-\overrightarrow$|=$\sqrt{2}$,
∴$\sqrt{(x-1)^{2}+(y-1)^{2}}$=$\sqrt{2}$,即(x-1)2+(y-1)2=2.
∴|$\overrightarrow{c}$|的最大值為$\sqrt{{1}^{2}+{1}^{2}}$+$\sqrt{2}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 熟練掌握向量的坐標(biāo)運(yùn)算和圓的方程及數(shù)形結(jié)合是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,已知sinA+sinBcosC=0,則tanA的最大值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)S=1+4(x-1)+6(x-1)2+4(x-1)3+(x-1)4,則S等于( 。
A.(x-2)4B.(x-1)4C.x4D.(x+1)4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖是一個(gè)算法的流程圖,則輸出的a值為( 。
A.511B.1023C.2047D.4095

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合A={1,2,3},B={x∈R|x2-x=0},則A∪B=( 。
A.{1}B.{0,1}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足an+1=λan+2n(n∈N*,λ∈R),且a1=2.
(1)若λ=1,求數(shù)列{an}的通項(xiàng)公式;
(2)若λ=2,證明數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列,并求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上單調(diào)遞增,且函數(shù)值從-2增大到0.若${x_1}_{\;}、{x_2}∈[{-\frac{π}{6},\frac{π}{2}}]$,且f(x1)=f(x2),則f(x1+x2)=( 。
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?5°,經(jīng)過(guò)108s后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?340m.(取$\sqrt{3}$=1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案