如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M為AD中點.
(Ⅰ) 證明MF⊥BD;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為數(shù)學(xué)公式,求AB的長.

(Ⅰ)證明:∵ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,
∴△ADF為正三角形
∵M為AD中點,∴MF⊥AD
∵平面ABCD⊥平面ADEF,平面ABCD∩平面ADEF=AD,
∴MF⊥平面ABCD
∴MF⊥BD;
(Ⅱ)設(shè)AB=x.取AF的中點G.

由題意得DG⊥AF.
∵平面ABCD⊥平面ADEF,AB⊥AD,∴AB⊥平面ADEF,∴AB⊥DG.
∴DG⊥平面ABF.
過G作GH⊥BF,垂足為H,連接DH,則DH⊥BF,∴∠DHG為二面角A-BF-D的平面角.
在直角△AGD中,AD=2,AG=1,得DG=
在直角△BAF中,由=sin∠AFB=,∴
在直角△DGH中,DG=,,∴DH=2
∵cos∠DHG==,∴x=,∴AB=
分析:(Ⅰ)證明MF⊥平面ABCD,即可得到結(jié)論;
(II)取AF的中點G,過G作GH⊥BF,垂足為H,連接DH,可證得∠DHG為二面角A-BF-D的平面角,解三角形DGH可得答案.
點評:本題考查線面垂直,考查面面角,考查學(xué)生的計算能力,正確作出面面角是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
12
AD=a,G是EF的中點,
(1)求證平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
12
AD=a
,G是EF的中點.
(1)求證:平面AGC⊥平面BGC;
(2)求二面角B-AC-G的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)如圖,平面ABCD⊥平面ABEF,ABCD是正方形.ABEF是矩形,G是線段EF的中點,且B點在平面ACG內(nèi)的射影在CG上.
(1)求證:AG上平面BCG;
(2)求直線BE與平面ACG所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
1
2
AD=a,G是EF的中點,則GB與平面AGC所成角的正弦值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
3
2
AD
,G是EF的中點,則GB與平面AGC所成角的正弦值為( 。
A、
6
6
B、
21
6
C、
7
7
D、
21
7

查看答案和解析>>

同步練習(xí)冊答案