【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:
氣溫(oC) | 0 | 4 | 12 | 19 | 27 |
熱奶茶銷售杯數(shù) | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求熱奶茶銷售杯數(shù)關于氣溫的線性回歸方程(精確到0.1),若某天的氣溫為15oC,預測這天熱奶茶的銷售杯數(shù);
(Ⅱ)從表中的5天中任取一天,若已知所選取該天的熱奶茶銷售杯數(shù)大于120,求所選取該天熱奶茶銷售杯數(shù)大于130的概率.
參考數(shù)據(jù):,.參考公式:,
【答案】(Ⅰ),預測熱奶茶的銷售杯數(shù)117.(Ⅱ)
【解析】
(Ⅰ)由表格中數(shù)據(jù)計算、,求出回歸系數(shù),寫出回歸方程,利用方程計算x=15時的值;
(Ⅱ)根據(jù)條件概率的計算公式,求出所求的概率值.
解:(Ⅰ)由表格中數(shù)據(jù)可得,,.
∴.
∴
∴熱奶茶銷售杯數(shù)關于氣溫的線性回歸方程為.
∴當氣溫為15oC時,由回歸方程可以預測熱奶茶的銷售杯數(shù)
為(杯)
(Ⅱ)設表示事件“所選取該天的熱奶茶銷售杯數(shù)大于120”,表示事件“所選取該天的熱奶茶銷售杯數(shù)大于130”,則“已知所選取該天的熱奶茶銷售杯數(shù)大于120時,銷售杯數(shù)大于130”應為事件.
∵,
∴
∴已知所選取該天的熱奶茶銷售杯數(shù)大于120時,銷售杯數(shù)大于130的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是各項均為正數(shù)的等差數(shù)列.
(1)若,且成等比數(shù)列,求數(shù)列的通項公式;
(2)在(1)的條件下,數(shù)列的前和為,設,若對任意的,不等式恒成立,求突數(shù)的最小值:
(3)若數(shù)列中有兩項可以表示位某個整數(shù)的不同次冪,求證:數(shù)列中存在無窮多項構成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如圖.
(1)求頻率分布直方圖中的值;
(2)估計總體中成績落在中的學生人數(shù);
(3)根據(jù)頻率分布直方圖估計名學生數(shù)學考試成績的眾數(shù),中位數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}為正項等比數(shù)列,a1+a2=6,a3=8.
(1)求數(shù)列{an}的通項公式an;
(2)若bn=,且{bn}前n項和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我邊防局接到情報,在海礁所在直線的一側點處有走私團伙在進行交易活動,邊防局迅速派出快艇前去搜捕:如圖,已知快艇出發(fā)位置在的另一側碼頭處,公里,公里,;
(1)是否存在點,使快艇沿航線或的路程相等;如存在,則建立適當?shù)闹苯亲鴺讼,求出點的軌跡方程,且畫出軌跡的大致圖形;如不存在,請說明理由;
(2)問走私船在怎樣的區(qū)域上時,路線比路線的路程短,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程;
(2)若與有且僅有三個公共點,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】重慶市第八中學校為了解學生喜愛運動是否與性別有關,從全校學生中隨機抽取50名學生進行問卷調(diào)查,得到如圖所示的列聯(lián)表.
喜愛運動 | 不喜愛運動 | 合計 | |
男生 | 22 | 8 | 30 |
女生 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)能否有97.5%以上的把握認為“喜愛運動”與“性別”有關;
(2)用分層抽樣的方法從被調(diào)查的20名女生中抽取5名進行問卷調(diào)查,求抽取喜愛運動的女生、不喜愛運動的女生各有多少的人;
(3)在(2)抽取的女生中,隨機選出2人進行座談,求至少有1名是喜愛運動的女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點、,若直線的圖像上存在點,使得成立,則說直線是“型直線”.給出下列直線:
(1);
(2);
(3);
(4);
(5)(常數(shù))
其中代表“型直線”的序號是___________.(要求寫出所有型直線的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求曲線在點處的切線方程;
(2)設函數(shù),其中是自然對數(shù)的底數(shù),討論的單調(diào)性并判斷有無極值,有極值時求出極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com