分析 (1)由題意可得$\frac{1}{2}$•AB•AC•sinθ=3,由0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,可得0≤AB•AC•cosθ≤6,求得0≤cotθ≤1,可得θ∈[$\frac{π}{4}$,$\frac{π}{2}$].
(2)利用三角恒等變換化簡函數(shù)f(θ)=sin(2θ-$\frac{π}{3}$)+$\frac{1-\sqrt{3}}{2}$.由θ∈[$\frac{π}{4}$,$\frac{π}{2}$],利用正弦函數(shù)的定義域和值域,求得f(θ)的值域.
解答 解:(1)由題意可得$\frac{1}{2}$•AB•AC•sinθ=3,∴AB•AC•sinθ=6.
由0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,可得0≤AB•AC•cosθ≤6,故有0≤$\frac{6cosθ}{sinθ}$≤6,
求得0≤cotθ≤1,∴θ∈[$\frac{π}{4}$,$\frac{π}{2}$].
(2)函數(shù)f(θ)=sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=$\frac{1-cos(2θ+\frac{π}{2})}{2}$-$\frac{\sqrt{3}}{2}$(1+cos2θ)
=$\frac{1}{2}$+$\frac{1}{2}$sin2θ-$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$cos2θ=sin(2θ-$\frac{π}{3}$)+$\frac{1-\sqrt{3}}{2}$.
由θ∈[$\frac{π}{4}$,$\frac{π}{2}$],可得2θ-$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],sin(2θ-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,$\frac{3-\sqrt{3}}{2}$].
點(diǎn)評 本題主要考查兩個向量的數(shù)量積的定義,三角恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{6}$ | B. | $\frac{π}{6}$ | C. | $-\frac{π}{12}$ | D. | $\frac{7π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com