【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
其中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
【答案】(1);(2);(3)時(shí)段產(chǎn)量的預(yù)報(bào)值為515.4,投入成本的預(yù)報(bào)值為48.432
【解析】試題分析:(1)由散點(diǎn)圖可作出判斷;(2)由得,令,,,由圖表中的數(shù)據(jù)可知,,從而得到關(guān)于的回歸方程;(3)根據(jù)回歸直線方程得到時(shí),,.
試題解析:
(1)適宜
(2)由得
令,,
由圖表中的數(shù)據(jù)可知,
∴
∴關(guān)于的回歸方程為
(3)時(shí),由回歸方程得,
即雞舍的溫度為時(shí),雞的時(shí)段產(chǎn)量的預(yù)報(bào)值為515.4,投入成本的預(yù)報(bào)值為48.432.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,底面為等腰直角三角形, , , 若、、別是棱、、的中點(diǎn),則下列四個(gè)命題:
;
②三棱錐的外接球的表面積為;
③三棱錐的體積為;
④直線與平面所成角為
其中正確的命題有__________.(把所有正確命題的序號(hào)填在答題卡上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , , ,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時(shí),求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn), 在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)恰好在以, 為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長(zhǎng)為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)為,圓: ,過作垂直于軸的直線交拋物線于、兩點(diǎn),且的面積為.
(1)求拋物線的方程和圓的方程;
(2)若直線、均過坐標(biāo)原點(diǎn),且互相垂直, 交拋物線于,交圓于, 交拋物線于,交圓于,求與的面積比的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點(diǎn),起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com