3.已知變量x,y之間的線性回歸方程為$\widehat{y}$=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說法錯誤的是( 。
x681012
y6m32
A.變量x,y之間呈現(xiàn)負(fù)相關(guān)關(guān)系
B.m=4
C.可以預(yù)測,當(dāng)x=11時,y=2.6
D.由表格數(shù)據(jù)知,該回歸直線必過點(diǎn)(9,4)

分析 求出$\overline{x}$,代入回歸方程解出$\overline{y}$,列方程解出m.

解答 解:$\overline{x}$=$\frac{6+8+10+12}{4}$=9,∴$\overline{y}$=-0.7×9+10.3=4.
∴$\frac{6+m+3+2}{4}=4$,解得m=5.
故B選項(xiàng)錯誤.
故選B.

點(diǎn)評 本題考察了線性回歸方程經(jīng)過樣本中心的特點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|y=lg$\frac{1-x}{x}$},N={y|y=x2+2x+3},則(∁RM)∩N=( 。
A.(0,1)B.[1,+∞)C.[2,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知△ABC中,A=45°,a=2,b=$\sqrt{2}$,那么∠B為( 。
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計(jì)數(shù)據(jù):
年份20112012201320142015
居民生活用水量(萬噸)236246257276286
(Ⅰ)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(Ⅱ)根據(jù)改革方案,預(yù)計(jì)在2020年底城鎮(zhèn)化改革結(jié)束,到時候居民的生活用水量將趨于穩(wěn)定,預(yù)計(jì)該城市2023年的居民生活用水量.
參考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)列{an}滿足a1=$\frac{1}{2}$,且對于任意n∈N+都滿足an+1=$\frac{a_n}{{3{a_n}+1}}$,則數(shù)列{an•an+1}的前n項(xiàng)和為( 。
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{2(3n+2)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A、B、C所對的邊為a、b、c,B=60°,a=4,其面積S=20$\sqrt{3}$,則c=( 。
A.15B.16C.20D.4$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5各月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如表所示.
x(月份)12345
y(萬盒)55668
若x,y線性相關(guān),線性回歸方程為$\widehat{y}$=0.7x+$\widehat{a}$,估計(jì)該制藥廠6月份生產(chǎn)甲膠囊產(chǎn)量為( 。
A.8.1萬盒B.8.2萬盒C.8.9萬盒D.8.6萬盒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)等差數(shù)列{an}前n項(xiàng)和為Sn,且a5+a6=24,S11=143.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.拋物線C:y2=4x的焦點(diǎn)為F,斜率為k的直線l與拋物線C交于M,N兩點(diǎn),若線段MN的垂直平分線與x軸交點(diǎn)的橫坐標(biāo)為a(a>0),n=|MF|+|NF|,則2a-n等于( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案