8.在△ABC中,內(nèi)角A、B、C所對的邊為a、b、c,B=60°,a=4,其面積S=20$\sqrt{3}$,則c=(  )
A.15B.16C.20D.4$\sqrt{21}$

分析 利用三角形的面積公式S=$\frac{1}{2}$acsinB來解答.

解答 解:由題意得:$\frac{1}{2}$acsinB=20$\sqrt{3}$,即$\frac{1}{2}$×4c×sin60°=20$\sqrt{3}$,
解得c=20.
故選:C.

點(diǎn)評 本題考查余弦定理及三角形的面積公式,屬基礎(chǔ)題,熟記相關(guān)公式并靈活運(yùn)用是解決該類問題的基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等比數(shù)列{an}中,a1=3,a8=1,則a2a3a4a5a6a7=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某品牌新款夏裝即將上市,為了對夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):
連鎖店A店B店C店
售價(jià)x(元)808682888490
銷售量y(件)887885758266
(1)以三家連鎖店分別的平均售價(jià)和平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程$\widehaty=\widehatbx+\widehata$;
(2)在大量投入市場后,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價(jià)應(yīng)定為多少元(保留整數(shù))?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.半徑為3cm的球的體積為36πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y之間的線性回歸方程為$\widehat{y}$=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說法錯(cuò)誤的是(  )
x681012
y6m32
A.變量x,y之間呈現(xiàn)負(fù)相關(guān)關(guān)系
B.m=4
C.可以預(yù)測,當(dāng)x=11時(shí),y=2.6
D.由表格數(shù)據(jù)知,該回歸直線必過點(diǎn)(9,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,sinA,sinC,sinB成等比數(shù)列,且b=2a.
(1)求cosC的值;
(2)若△ABC的面積為2$\sqrt{7}$sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點(diǎn).
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知x,y的取值如表所示:從散點(diǎn)圖分析,x與y線性相關(guān),且$\widehat{y}$=kx+1,則k=0.8.
x0134
y0.91.93.24.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}的前n項(xiàng)和Sn=n2+2n-1,則a1+a3+a5+…+a99=5049.

查看答案和解析>>

同步練習(xí)冊答案