已知等差數(shù)列{an}中,a1<0且a1+a2+…+a100=0,設(shè)bn=anan+1an+2(n∈N*),當(dāng){bn}的前n項和Sn取最小值時,n的值為( )
A.48
B.50
C.48或50
D.48或49
【答案】分析:由數(shù)列為等差數(shù)列,利用等差數(shù)列的性質(zhì)化簡a1+a2+…+a100=0,得到a1+a100=0,a50+a51=0,由a1小于0,得到a100大于0,可得此數(shù)列為遞增數(shù)列,進(jìn)而得到a50小于0,a51大于0,即此數(shù)列的前50項均為負(fù)值,從51項開始變?yōu)樨?fù)值,根據(jù)bn=anan+1an+2,表示出{bn}的前n項和Sn,利用兩數(shù)相乘取符號的法則,即可得到{bn}的前n項和Sn取最小值時n的值.
解答:解:∵等差數(shù)列{an},
∴a1+a100=a2+a99=…=a50+a51,
又a1+a2+…+a100=0,
∴50(a1+a100)=50(a50+a51)=0,即a1+a100=0,a50+a51=0,
又a1<0,∴a100>0,即等差數(shù)列為遞增數(shù)列,
∴a50<0,a51>0,
∵bn=anan+1an+2(n∈N*),
∴{bn}的前n項和Sn=a1a2a3+a2a3a4+…+anan+1an+2,
則當(dāng){bn}的前n項和Sn取最小值時,n的值為48或50.
故選C
點評:此題考查了等差數(shù)列的性質(zhì),是一道中檔題.其中根據(jù)等差數(shù)列的性質(zhì)得到a1+a100=0,a50+a51=0是解本題的關(guān)鍵.