分析 (1)根據(jù)平面向量的數(shù)量積求模長即可;
(2)根據(jù)平面向量的數(shù)量積求向量的夾角即可.
解答 解:(1)因為|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,且|$\overrightarrow a$|與|$\overrightarrow b$|的夾角為$\frac{π}{3}$,
所以$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|×|$\overrightarrow$|cos$\frac{π}{3}$=1×2×$\frac{1}{2}$=1,
所以|$\overrightarrow a$+2$\overrightarrow b$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow)}^{2}}$
=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+{4\overrightarrow}^{2}}$
=$\sqrt{1+4×1+4×4}$
=$\sqrt{21}$;
(2)因為(2$\overrightarrow a$-$\overrightarrow$)•(3$\overrightarrow a$+$\overrightarrow b$)=3,
所以(2$\overrightarrow{a}$-$\overrightarrow$)•(3$\overrightarrow{a}$+$\overrightarrow$)=6${\overrightarrow{a}}^{2}$-3$\overrightarrow{a}$•$\overrightarrow$+2$\overrightarrow{a}$•$\overrightarrow$-${\overrightarrow}^{2}$
=6-$\overrightarrow{a}$•$\overrightarrow$-4
=3,
解得$\overrightarrow{a}$•$\overrightarrow$=-1,
設$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|×|$\overrightarrow$|cosθ=1×2×cosθ=-1,
解得cosθ=-$\frac{1}{2}$;
又θ∈[0,π],
所以向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ=$\frac{2π}{3}$.
點評 本題考查了利用平面向量的數(shù)量積求模長與夾角的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,0) | B. | ($\frac{1}{7}$,$\frac{2}{7}$) | C. | ($\frac{2}{7}$,$\frac{1}{7}$) | D. | ($\frac{1}{7}$,$\frac{1}{14}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[39.95,39.97) | 6 | P1 |
[39.97,39.99) | 12 | 0.20 |
[39.99,40.01) | a | 0.50 |
[40.01,40.03) | b | P2 |
合計 | n | 1.00 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com