9.四棱錐P-ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E,G分別是BC,PE的中點
(1)求證:AD⊥PE
(2)求二面角E-AD-G的余弦值.

分析 (1)取AD中點O,連結OP,OE,推導出OP⊥AD,OE⊥AD,由此能證明AD⊥PE.
(2)取OE的中點F,連結FG、OG,則AD⊥OG,OE⊥AD,從而∠GOE是二面角E-AD-G的平面角,由此能求出二面角E-AD-G的余弦值.

解答 證明:(1)如圖,取AD中點O,連結OP,OE,
∵PA=PD,∴OP⊥AD,
又E是BC的中點,∴OE∥AB,∴OE⊥AD,
又OP∩OE=O,∴AD⊥平面OPE,
∵PE?平面OPE,∴AD⊥PE.
解:(2)取OE的中點F,連結FG、OG,則由(1)知AD⊥OG,
又OE⊥AD,∴∠GOE是二面角E-AD-G的平面角,
∵PA=PD,∠APD=60°,
∴△APD為等邊三角形,且邊長為2,
∴OP=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,F(xiàn)G=$\frac{1}{2}OP=\frac{\sqrt{3}}{2}$,OF=$\frac{1}{2}CD$=1,
∴OG=$\frac{\sqrt{7}}{2}$,∴cos$∠GOE=\frac{2\sqrt{7}}{7}$.
∴二面角E-AD-G的余弦值為$\frac{2\sqrt{7}}{7}$.

點評 本題考查異面直線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知正方體ABCD-A1B1C1D1的棱長為4,點E是線B1C段的中點,則三棱錐A-DED1外接球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=$\frac{1}{3}$,an=$\frac{{a}_{n-1}}{3{a}_{n-1}+1}$(n≥2,n∈N+).
(Ⅰ)求a2,a3,a4的值,并猜想數(shù)列{an}的通項公式an
(Ⅱ)用數(shù)學歸納法證明你猜想的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知點M(-1,0),N(1,0),曲線E上任意一點到點M的距離均是到點N的距離的$\sqrt{3}$倍.
(1)求曲線E的方程;
(2)已知m≠0,設直線l:x-my-1=0交曲線E于A,C兩點,直線l2:mx+y-m=0交曲線E于B,D兩點,C,D兩點均在x軸下方,當CD的斜率為-1時,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知D為圓O:x2+y2=8上的動點,過點D向x軸作垂線DN,垂足為N,T在線段DN上且滿足$|{TN}|:|{DN}|=1:\sqrt{2}$.
(1)求動點T的軌跡方程;
(2)若M是直線l:x=-4上的任意一點,以OM為直徑的圓K與圓O相交于P,Q兩點,求證:直線PQ必過定點E,并求出點E的坐標;
(3)若(2)中直線PQ與動點T的軌跡交于G,H兩點,且$\overrightarrow{EG}=3\overrightarrow{HE}$,求此時弦PQ的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示的幾何體中,2CC1=3AA1=6,CC1⊥平面ABCD,且AA1⊥平面ABCD,正方形ABCD的邊長為2,E為棱A1D中點,平面ABE分別與棱C1D,C1C交于點F,G.
(Ⅰ)求證:AE∥平面BCC1;
(Ⅱ)求證:A1D⊥平面ABE;
(Ⅲ)求二面角D-EF-B的大小,并求CG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.正四棱柱ABCD-A1B1C1D1中,己知AA1=8,點E,F(xiàn)分別的棱BB1,CC1上,且滿足AB=BE=3,F(xiàn)C1=2,則平面AEF與平面ABC所成的銳二面角的正切值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,∠BB1C1=60°,平面AA1B1B⊥平面BB1C1C.
(Ⅰ)求證:B1C⊥AC1
(Ⅱ)求二面角B-AC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,三棱錐A-BCD中,△ABC和△BCD所在平面互相垂直,且BC=BD=4,AC=4$\sqrt{2}$,CD=4$\sqrt{3},∠ACB={45°}$,E,F(xiàn)分別為AC,DC的中點.
(Ⅰ)求證:平面ABD⊥平面BCD;
(Ⅱ)求二面角E-BF-C的正弦值.

查看答案和解析>>

同步練習冊答案