19.下列每組函數(shù)是同一函數(shù)的是( 。
A.f(x)=x0與f(x)=1B.f(x)=$\sqrt{{x}^{2}}$-1與f(x)=|x|-1
C.f(x)=$\frac{{x}^{2}-4}{x+2}$與f(x)=x-2D.f(x)=$\sqrt{(x-1)(x-2)}$與f(x)=$\sqrt{x-1}$$\sqrt{x-2}$

分析 根據(jù)兩個函數(shù)的定義域相同,對應關(guān)系也相同,判斷它們是同一函數(shù)即可.

解答 解:對于A:f(x)=x0的定義域為{x|x≠0},而f(x)=1的定義域為R,定義域不同,∴不是同一函數(shù);
對于B:f(x)=$\sqrt{{x}^{2}}$-1=|x|-1,的定義域為R,而f(x)=|x|-1的定義域為R,它們定義域相同,對應關(guān)系也相同,∴是同一函數(shù);
對于C:f(x)=$\frac{{x}^{2}-4}{x+2}$的定義域為{x|x≠-2},而與f(x)=x-2的定義域為R,定義域不同,∴不是同一函數(shù);
對于D:f(x)=$\sqrt{(x-1)(x-2)}$的定義域為{x|x≥2或x≤1},而f(x)=$\sqrt{x-1}$$\sqrt{x-2}$的定義域為{x|x≥2},定義域不同,∴不是同一函數(shù);
故選B.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=-1處取得極大值,記g(x)=$\frac{1}{f′(x)}$.程序框圖如圖所示,若輸出的結(jié)果S>$\frac{2014}{2015}$,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤2014?B.n≤2015?C.n>2014?D.n>2015?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知不等式x2-2ax+a>0(x∈R)恒成立,則不等式a2x+1<a${\;}^{{x}^{2}+2x-3}$<1的解集是( 。
A.(1,2)B.(-$\frac{1}{2}$,2)C.(-2,2)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設Sn是等差數(shù)列{an}的前n項和,若$\frac{a_8}{a_7}=\frac{13}{5}$,則$\frac{{{S_{15}}}}{{{S_{13}}}}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}的前n項和Sn滿足4an-3Sn=2,其中n∈N*.則數(shù)列{an}的通項公式為an=2•4n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某同學在研究函數(shù)f(x)=$\frac{4}{|x|+2}$-1(x∈R)時,得出了下面4個結(jié)論:①等式f(-x)=f(x)在x∈R時恒成立;②函數(shù)f(x)在x∈R上的值域為(-1,1];③曲線y=f(x)與g(x)=2x-2僅有一個公共點;④若f(x)=$\frac{4}{|x|+2}$-1在區(qū)間[a,b](a,b為整數(shù))上的值域是[0,1],則滿足條件的整數(shù)數(shù)對(a,b)共有5對.其中正確結(jié)論的序號有①②④(請將你認為正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知冪函數(shù)f ( x )過點(2,$\sqrt{2}$),則f ( 9 )的值為(  )
A.$\frac{1}{3}$B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,橢圓的方程為$\frac{x^2}{6}+\frac{y^2}{2}$=1,A是其右頂點,B是該橢圓在第一象限部分上的一點,且∠AOB=$\frac{π}{4}$.若點C是橢圓上的動點,則$\overrightarrow{OA}•\overrightarrow{BC}$的取值范圍為[-9,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,決定采用分層抽樣的方法,從中抽取容量為15的樣本.則從上述各層中依次抽取的人數(shù)分別是(  )
A.8,4,3B.6,5,4C.7,5,3D.8,5,2

查看答案和解析>>

同步練習冊答案