9.某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,決定采用分層抽樣的方法,從中抽取容量為15的樣本.則從上述各層中依次抽取的人數(shù)分別是( 。
A.8,4,3B.6,5,4C.7,5,3D.8,5,2

分析 本題是一個(gè)分層抽樣,根據(jù)單位共有職工750人,要取一個(gè)容量為15的樣本,得到本單位每個(gè)職工被抽到的概率,即可得到答案.

解答 解:抽取人數(shù)與職工總數(shù)的比是15:750=1:50,
則各年齡段(層)的職工人數(shù)依次是350×$\frac{1}{50}$=7,250×$\frac{1}{50}$=5,150×$\frac{1}{50}$=3.
故選C.

點(diǎn)評(píng) 本題主要考查分層抽樣,分層抽樣的優(yōu)點(diǎn)是:使樣本具有較強(qiáng)的代表性,并且抽樣過(guò)程中可綜合選用各種抽樣方法,因此分層抽樣是一種實(shí)用、操作性強(qiáng)、應(yīng)用比較廣泛的抽樣方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列每組函數(shù)是同一函數(shù)的是( 。
A.f(x)=x0與f(x)=1B.f(x)=$\sqrt{{x}^{2}}$-1與f(x)=|x|-1
C.f(x)=$\frac{{x}^{2}-4}{x+2}$與f(x)=x-2D.f(x)=$\sqrt{(x-1)(x-2)}$與f(x)=$\sqrt{x-1}$$\sqrt{x-2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某中學(xué)調(diào)查200名學(xué)生每周晚自習(xí)時(shí)間(單位,小時(shí)),制成了如圖所示頻率分布直方圖,其中自習(xí)時(shí)間的范圍為[17.5,30],根據(jù)直方圖,這200名學(xué)生每周自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是140.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$T:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,動(dòng)點(diǎn)P在橢圓上運(yùn)動(dòng),|PF1|•|PF2|的最大值為25,且點(diǎn)P到F1的距離的最小值為1.
(1)求橢圓T的方程;
(2)直線l與橢圓T有且僅有一個(gè)交點(diǎn)A,且l切圓M:x2+y2=R2(其中(3<R<5))于點(diǎn)B,求A、B兩點(diǎn)間的距離|AB|的最大值;
(3)當(dāng)過(guò)點(diǎn)C(10,1)的動(dòng)直線與橢圓T相交于兩不同點(diǎn)G、H時(shí),在線段GH上取一點(diǎn)D,滿足$|{\overrightarrow{GC}}|•|{\overrightarrow{HD}}|=|{\overrightarrow{GD}}|•|{\overrightarrow{CH}}|$,求證:點(diǎn)D在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行下面的程序框圖,若輸入的N是5,那么輸出的S=-46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|2x+1|.
(1)解不等式:f(x)≥x+3;
(2)若不等式f(x)-2|x-1|≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線AB的方程為$\sqrt{3}$x+y-7=0,則直線AB的傾斜角是( 。
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=ax3+x+1的圖象在點(diǎn)(1,f(1))處的切線與直線x+4y=0垂直,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知復(fù)數(shù)z=x+yi(x,y∈R)滿足$|{\overline z}|≤1$,則y≥x-1的概率為( 。
A.$\frac{3}{4}-\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{3}{4}+\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案