已知函數(shù)f(x)=x-
1
x+1
,g(x)=x2-2ax+4若對(duì)任意x1∈[0,1],存在x2∈[1,2],使f(x1)>g(x2),求實(shí)數(shù)a的取值范圍?
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出f(x)min=f(0)=-1,根據(jù)題意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1,分離參數(shù),要使a≥
x
2
+
5
2x
),在x∈[1,2]能成立,只需使a≥h(x)min,即可得出結(jié)論.
解答: 解:∵f(x)=x-
1
x+1
,x∈[0,1],
∴f′(x)=1+
1
(x+1)2
>0,
∴f(x)在[0,1]上單調(diào)遞增
∴f(x)min=f(0)=-1
根據(jù)題意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1.
即a≥
x
2
+
5
2x
能成立,
h(x)=
x
2
+
5
2x
,則要使a≥h(x),在x∈[1,2]能成立,
只需使a≥h(x)min,
又函數(shù)h(x)=
x
2
+
5
2x
在x∈[1,2]上單調(diào)遞減,
h(x)min=h(2)=
9
4

故只需a≥
9
4
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)函數(shù)恒成立問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題,分離參數(shù)求最值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=cosx,其中x∈[0,
3
2
π],則該曲線與坐標(biāo)軸圍成的面積等于( 。
A、1
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+bx+c.試說(shuō)明“b,c均為奇數(shù)”是“方程f(x)=0無(wú)整數(shù)根”的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且acosC=(2b-c)cosA.
(Ⅰ)求角A的大;
(Ⅱ)已知a=
3
,D點(diǎn)為邊BC的中點(diǎn),試求AD的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
2
倍,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為2
3

(Ⅰ)求橢圓E的方程;
(Ⅱ)點(diǎn)P是橢圓E上橫坐標(biāo)大于2的動(dòng)點(diǎn),點(diǎn)B,C在y軸上,圓(x-1)2+y2=1內(nèi)切于△PBC,試判斷點(diǎn)P在何位置時(shí)△PBC的面積S最小,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=6cos2
ωx
2
+
3
sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求ω的值;
(Ⅱ)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的值域;
(Ⅲ)若f(x0)=
6
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是橢
x2
2
+y2=1上的兩點(diǎn),且
AF
FB
,其中F為橢圓的右焦點(diǎn).
(1)當(dāng)λ=2時(shí),求直線AB的方程;
(2)設(shè)M(
5
4
,0),求證:當(dāng)實(shí)數(shù)λ變化時(shí)
MA
MB
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
6
)(ω>0)相鄰兩個(gè)對(duì)稱軸之間的距離是號(hào),且滿足,f(
π
4
)=
3

(I)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在鈍角△ABC中,a、b、c分別為角A、B、C的對(duì)邊,sinB=
3
sinC,a=2,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從甲,乙,丙,丁4個(gè)人中隨機(jī)選取兩人,則甲乙兩人中有且只一個(gè)被選取的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案