【題目】已知三棱柱中,,側(cè)面底面的中點(diǎn),,.

(Ⅰ)求證:為直角三角形;

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見證明;(Ⅱ)

【解析】

(Ⅰ)取中點(diǎn),連接;易知為等邊三角形,從而得到,結(jié)合,可根據(jù)線面垂直判定定理得到平面,由線面垂直性質(zhì)知,由平行關(guān)系可知,從而證得結(jié)論;(Ⅱ)以為坐標(biāo)原點(diǎn)可建立空間直角坐標(biāo)系,根據(jù)空間向量法可求得平面和平面的法向量的夾角的余弦值,根據(jù)所求二面角為鈍二面角可得到最終結(jié)果.

(Ⅰ)取中點(diǎn),連接

中,, 是等邊三角形

中點(diǎn)

,平面 平面

平面

為直角三角形

(Ⅱ)以為坐標(biāo)原點(diǎn),建立如下圖所示空間直角坐標(biāo)系:

,,,,

,,,

設(shè)平面的法向量為

,令,則,

又平面的一個(gè)法向量為

二面角為鈍二面角

二面角的余弦值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為降低養(yǎng)殖戶養(yǎng)鴨風(fēng)險(xiǎn),某保險(xiǎn)公司推出了鴨意外死亡保險(xiǎn),該保單合同規(guī)定每只幼鴨投保2元,若生長期內(nèi)鴨意外死亡,則公司每只鴨賠付12.假設(shè)鴨在生長期內(nèi)的意外死亡率為0.15,且每只鴨是否死亡相互獨(dú)立.若某養(yǎng)殖戶養(yǎng)鴨3000只,都投保該險(xiǎn)種.

1)求該保單保險(xiǎn)公司賠付金額等于保費(fèi)時(shí),鴨死亡的只數(shù);

2)求該保單保險(xiǎn)公司平均獲利多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)若,設(shè)是函數(shù)的零點(diǎn).

i)證明:時(shí)存在唯一;

ii)若,記,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過拋物線C的焦點(diǎn)F作互相垂直的兩條直線AB,CD,與拋物線C分別相交于A,BCD,點(diǎn)ACx軸上方.

1)若直線AB的傾斜角為,求的值;

2)設(shè)的面積之和為S,求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽已建的倉庫的底面直徑為,高,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多食鹽.現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大 (高不變);二是高度增加,(底面直徑不變).

1)分別計(jì)算按這兩種方案所建的倉庫的體積;

2)分別計(jì)算按這兩種方案所建的倉庫的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)記,試判斷函數(shù)的極值點(diǎn)的情況;

(Ⅱ)若有且僅有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黃河被稱為我國的母親河,它的得名據(jù)說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開始沿岸設(shè)有若干個(gè)觀測點(diǎn),兩股河水在流經(jīng)相鄰的觀測點(diǎn)的過程中,其混合效果相當(dāng)于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經(jīng)過第二個(gè)觀測點(diǎn)時(shí),兩股河水的含沙量;

2)從第幾個(gè)觀測點(diǎn)開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三理科班共有名同學(xué)參加某次考試,從中隨機(jī)挑出名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:

數(shù)學(xué)成績

物理成績

1)數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系,求的線性回歸方程;

2)本次考試中,規(guī)定數(shù)學(xué)成績達(dá)到分為優(yōu)秀,物理成績達(dá)到分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有人,請(qǐng)寫出列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線m2xy30與直線nx+y30的交點(diǎn)為P,若直線l過點(diǎn)P,且點(diǎn)A1,3)和B32)到l的距離相等,求l的方程

查看答案和解析>>

同步練習(xí)冊(cè)答案