如圖,在直三棱柱中,,,為的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面;
(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
解析試題分析:(1)連接與相交于,,即可證明平面;
(2)根據(jù)線面垂直的判定定理即可證明平面
試題解析:(1)證明:如圖,連接與相交于
則為的中點(diǎn)
連結(jié),則為的中點(diǎn)
所以,
又平面
所以,平面
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/b/7otso2.png" style="vertical-align:middle;" />,所以四邊形為正方形,所有
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/1/9mbvz2.png" style="vertical-align:middle;" />平面
所以
所以平面
所以
又在直棱柱中
所以平面
考點(diǎn):1.線面平行的判定定理;2.線面垂直的判定定理和性質(zhì)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點(diǎn)A到平面A1BC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正方形ADEF與梯形ABCD所在平面互相垂直,,,,點(diǎn)M在線段EC上且不與E,C重合.
(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐M BDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
右圖是一個(gè)直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,,.
(1)設(shè)點(diǎn)是的中點(diǎn),證明:平面;
(2)求二面角的大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是邊長(zhǎng)為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,,是的中點(diǎn).
(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知矩形中,,,將矩形沿對(duì)角線把折起,使移到點(diǎn),且在平面上的射影恰好在上.
(1)求證:;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖示,在底面為直角梯形的四棱椎P ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.
(1)求證:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求點(diǎn)D到平面PBC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com