在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,的中點(diǎn).

(Ⅰ)求證://平面;
(Ⅱ)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.

(1)詳見解析;(2)存在,

解析試題分析:(1)要 證明//平面,只需在平面內(nèi)找一條直線與平行,連接于點(diǎn),則的中位線,所以,則//平面;(2)(方法一:)先假設(shè)滿足條件的點(diǎn)存在,由已知的垂直關(guān)系,找到二面角的平面角,然后在中計(jì)算,并判斷是否小于1;(方法二:)找三條兩兩垂直相交的直線,建立空間直角坐標(biāo)系,設(shè)點(diǎn)的坐標(biāo),并分別表示相關(guān)點(diǎn)的坐標(biāo),分別求兩個(gè) 半平面的法向量,再利用空間向量的夾角公式列式,確定點(diǎn)的位置,并判斷其是否在線段上.

試題解析:(1)連接,設(shè)和交于點(diǎn),連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/63/7/r0ycc.png" style="vertical-align:middle;" />∥,==,所以四邊形是平行四邊形,中點(diǎn),又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/76/5/1wq6f4.png" style="vertical-align:middle;" />是中點(diǎn),所以,又平面,平面,所以//平面;
(2)假設(shè)在線段上存在點(diǎn),使二面角的大小為.
(解法一)延長(zhǎng)交于點(diǎn),過點(diǎn),連接,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/18/e/1qbba4.png" style="vertical-align:middle;" />是矩形,平面⊥平面,所以⊥平面,又,所以,則,則就是二面角的平面角,則=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,,的中點(diǎn),四面體的體積為.

(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使異面直線所成的角為,若存在,確定點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是等邊三角形,,,將沿折疊到的位置,使得

(1)求證:;
(2)若,分別是,的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,為的中點(diǎn).

(1)求證:∥平面;
(2)求證:平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,D、E分別為、AD的中點(diǎn),F(xiàn)為上的點(diǎn),且

(I)證明:EF∥平面ABC;
(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的一條切線,切點(diǎn)為,都是⊙的割線,已知

(1)證明:
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.

(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(如圖,在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線AC與BD相交于點(diǎn)O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點(diǎn).

(1)求證:EF∥平面PCD;
(2)求三棱錐F﹣PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐中,,
 
(Ⅰ)求證:
(Ⅱ)若,的中點(diǎn),求與平面所成角的正切值  

查看答案和解析>>

同步練習(xí)冊(cè)答案