已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長為2.
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于AB兩點(diǎn),求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍.

(1)       (2)聯(lián)立方程組
……(1) 
由(1)有兩個(gè)不相等的負(fù)根得
(3)的垂直平分線方程為
從而得    

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱。線段的中垂線分別與交于兩點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)斜率為的直線與曲線交于兩點(diǎn),若為坐標(biāo)原點(diǎn)),試求直線上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:,為拋物線上一點(diǎn),關(guān)于軸對稱的點(diǎn),為坐標(biāo)原點(diǎn).
(1)若,求點(diǎn)的坐標(biāo);
(2)若過滿足(1)中的點(diǎn)作直線交拋物線兩點(diǎn), 且斜率分別為,且,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)我國汽車制造的現(xiàn)實(shí)情況,一般卡車高3 m,寬1.6 m.現(xiàn)要設(shè)計(jì)橫斷面為拋物線型的雙向二車道的公路隧道,為保障雙向行駛安全,交通管理規(guī)定汽車進(jìn)入隧道后必須保持距中線0.4 m的距離行駛.已知拱口AB寬恰好是拱高OC的4倍,若拱寬為a m,求能使卡車安全通過的a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)雙曲線 (a>1,b>0)的焦距為2c,直線過點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線 的距離與點(diǎn)(-1,0)到直線的距離之和s≥c.求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓過點(diǎn)A(a,0),B(0,b)的直
線傾斜角為,原點(diǎn)到該直線的距離為.
(1)求橢圓的方程;
(2)斜率小于零的直線過點(diǎn)D(1,0)與橢圓交于M,N兩點(diǎn),若求直線MN的方程;
(3)是否存在實(shí)數(shù)k,使直線交橢圓于P、Q兩點(diǎn),以PQ為直徑的圓過點(diǎn)D(1,0)?若存在,求出k的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在平面直角坐標(biāo)系中,曲線C:經(jīng)過伸縮變換后,所得曲線的焦點(diǎn)坐標(biāo)為(   ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

曲線C1的極坐標(biāo)方程為曲線C2的參數(shù)方程為為參數(shù)),以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,則曲線C1上的點(diǎn)與曲線C2上的點(diǎn)最近的距離為

A.2 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案