(12分)雙曲線 (a>1,b>0)的焦距為2c,直線過點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線 的距離與點(diǎn)(-1,0)到直線的距離之和s≥c.求雙曲線的離心率e的取值范圍.



即4e-25e+25≤0.                   ……10分
解不等式,得≤e≤5.
由于e>1>0
,所以e的取值范圍是.       ……12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線過點(diǎn)交拋物線于兩點(diǎn).
(1)證明:直線的斜率互為相反數(shù); 
(2)求面積的最小值;
(3)當(dāng)點(diǎn)的坐標(biāo)為.根據(jù)(1)(2)推測(cè)并回答下列問題(不必說明理由):①直線的斜率是否互為相反數(shù)? ②面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),是橢圓上的點(diǎn),且
(1)求的周長(zhǎng);   
(2)求點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長(zhǎng)為2.
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到
左焦點(diǎn)的最長(zhǎng)距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)如圖,設(shè)拋物線的準(zhǔn)線與x軸交于點(diǎn),
焦點(diǎn)為為焦點(diǎn),離心率為的橢圓與拋物線在x軸上方的交點(diǎn)為P
,延長(zhǎng)交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng)。
1)當(dāng)m=3時(shí),求橢圓的標(biāo)準(zhǔn)方程;
2)若且P點(diǎn)橫坐標(biāo)為,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過點(diǎn)且平行于極軸的直線的極坐標(biāo)方程是(  )

A.ρcosθ=4B.ρsinθ=4 C.ρsinθ=D.ρcosθ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知曲線C1的極坐標(biāo)方程為ρcos(θ-)=-1,曲線C2的極坐標(biāo)方程為ρ=2cos(θ-).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案