分析 在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,a=$\frac{3c}{2}$.由b-c=$\frac{1}{3}$a,可得b=$\frac{3c}{2}$=a.再利用余弦定理即可得出.
解答 解:在△ABC中,2sinA=3sinC,由正弦定理可得:2a=3c,∴a=$\frac{3c}{2}$.
∵b-c=$\frac{1}{3}$a,∴b=c+$\frac{1}{3}×\frac{3c}{2}$=$\frac{3c}{2}$.因此a=b.
則cosA=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{c}{2×\frac{3c}{2}}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題考查了正弦定理余弦定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
組數 | 分組 | 低碳族的人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com