【題目】設(shè)等差數(shù)列的前項(xiàng)和為,,若,數(shù)列的前項(xiàng)和為,且滿足.

求數(shù)列的通項(xiàng)公式及數(shù)列的前項(xiàng)和

是否存在非零實(shí)數(shù),使得數(shù)列為等比數(shù)列?并說(shuō)明理由.

【答案】;;不存在非零實(shí)數(shù),使數(shù)列為等比數(shù)列.

【解析】

試題分析:首先根據(jù)條件可得等差數(shù)列中,,,解得等差數(shù)列的首項(xiàng)和公差,得到數(shù)列的通項(xiàng)公式,代入得到,采用裂項(xiàng)相消法求和第一步,先求,根據(jù)公式這樣若數(shù)列是等比數(shù)列,需滿足.

試題解析:設(shè)數(shù)列的公差為,由,解得,因此數(shù)列的通項(xiàng)公式是,

所以,

所以

因?yàn)?/span>可得,

當(dāng)時(shí),8分

當(dāng)時(shí),,此時(shí)有,

若是等比數(shù)列,則有有,而,,彼此相矛盾,

故不存在非零實(shí)數(shù),使數(shù)列為等比數(shù)列。12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市組織500名志愿者參加敬老活動(dòng),為方便安排任務(wù)將所有志愿者按年齡(單位:歲)分組,得到的頻率分布表如下.現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人擔(dān)任聯(lián)系人.

年齡(歲)

頻率

第1組

[25,30)

0.1

第2組

[30,35)

0.1

第3組

[35,40)

0.4

第4組

[40,45)

0.3

第5組

[45,50)

0.1

I)應(yīng)分別在第1,2,3組中抽取志愿者多少人?

II)從這6人中隨機(jī)抽取2人擔(dān)任本次活動(dòng)的宣傳員,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是偶函數(shù),對(duì)于x∈R都有f(x+6)=f(x)+f(3)成立.當(dāng)x1,x2∈[0,3],且x1≠x2時(shí),都有 >0,給出下列命題:

① f(3)=0;

② 直線x=-6是函數(shù)y=f(x)的圖象的一條對(duì)稱軸;

③ 函數(shù)y=f(x)在[-9,-6]上為單調(diào)遞減函數(shù);

④ 函數(shù)y=f(x)在[-9,9]上有4個(gè)零點(diǎn).

其中正確的命題是____________.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{}的前n項(xiàng)和 (n為正整數(shù))。

1,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;

(2),試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形均為菱形,,

1求證:平面;

2求證:平面;

3求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱柱,側(cè)棱底面, ,且 , ,側(cè)棱.

(1)若上一點(diǎn),試確定點(diǎn)的位置,使平面;

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小正周期為.

1求函數(shù)的單調(diào)增區(qū)間;

2將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖象,若上至少含有10個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|a|4|b|8,ab的夾角是120°.

(1) 計(jì)算:① |ab|,② |4a2b|;


(2) 當(dāng)k為何值時(shí),(a2b)⊥(kab)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, ,

1)當(dāng)時(shí),試比較的大小關(guān)系;

2)猜想的大小關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案