精英家教網 > 高中數學 > 題目詳情
7、已知f′(x)是函數f(x)的導函數,若函數f(x)的圖象在點x=5處的切線方程是x+y-5=0,則f(5)+f′(5)=(  )
分析:由導數的幾何意義求出該點處切線的導數以及該點處的函數值,代入求值即可
解答:解:由題意函數f(x)的圖象在點x=5處的切線方程是x+y-5=0
f′(5)=-1,f(5)=0
故f(5)+f′(5)=-1
故選B.
點評:本題考查了導數的幾何意義,利用導數的幾何意義求切點處的導數值,出題方式新穎.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•溫州二模)已知f′(x)是函數f(x)=
13
x3-mx2+(m2-1)x+n
的導函數,若函數y=f[f′(x)]在區(qū)間[m,m+1]上單調遞減,則實數m的范圍是
-1≤m≤0
-1≤m≤0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f′(x)是函數f(x)=
13
x3-x2-3x
的導數,集合A={x|f′(x)≤0,x∈R},B={x|x2-2mx+m2-1≤0,x∈R};
(1)若A∩B=[1,3],求實數m的值;
(2)若B⊆CRA,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f′(x)是函數f(x)的導數,y=f′(x)的圖象如圖所示,則y=f(x)的圖象最有可能是圖中( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是函數y=2x的反函數,則f(4)的值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•桂林模擬)已知f'(x)是函數f(x)=
13
x3+x2+3
的導數,則f1(-1)=
-1
-1

查看答案和解析>>

同步練習冊答案