解答:
解:(1)當(dāng)a=2時(shí),不等式f(x)<x,即x|x-2|<x,
顯然x≠0,當(dāng)x>0時(shí),原不等式可化為:|x-2|<1⇒-1<x-2<1⇒1<x<3.
當(dāng)x<0時(shí),原不等式可化為:|x-2|>1⇒x-2>1或x-2<-1⇒x>3或x<1,∴x<0.
綜上得:當(dāng)a=2時(shí),原不等式的解集為{x|1<x<3或x<0}.
(2)∵對(duì)?x∈(0,1]都有f(x)<m,顯然m>0,
即-m<x(x-a)<m⇒對(duì)?x∈(0,1],
-<x-a<恒成立,
⇒對(duì)?x∈(0,1],
x-<a<x+.
設(shè)
g(x)=x-,x∈(0,1],
p(x)=x+,x∈(0,1],
則對(duì)?x∈(0,1],
x-<a<x+恒成立?g(x)
max<a<p(x)
min,x∈(0,1].
∵
g′(x)=1+,當(dāng)x∈(0,1]時(shí)g'(x)>0,∴函數(shù)g(x)在(0,1]上單調(diào)遞增,∴g(x)
max=1-m.
又∵
p′(x)=1-=
,當(dāng)
≥1即m≥1時(shí),對(duì)于x∈(0,1],p'(x)<0,
∴函數(shù)p(x)在(0,1]上為減函數(shù),∴p(x)
min=p(1)=1+m.
當(dāng)
<1,即0<m<1時(shí),當(dāng)
x∈(0,],p'(x)≤0,
當(dāng)0<m<1時(shí),在(0,1]上,
p(x)=x+≥2=2,當(dāng)
x=時(shí)取等號(hào),
又∵當(dāng)0<m<1時(shí),要g(x)
max<a<p(x)
min,即
1-m<a<2,還需滿(mǎn)足
2>1-m解得
3-2<m<1.
∴當(dāng)
3-2<m<1時(shí),
1-m<a<2;當(dāng)m≥1時(shí),1-m<a<1+m.