已知函數(shù)f(x)=ax2+btan3x是定義在[b-1,2b]上的奇函數(shù),則a+b的值為(  )
分析:具有奇偶性的函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱,由此求得b值;由奇函數(shù)定義f(-x)=-f(x)可解得a值,從而可得答案.
解答:解:因?yàn)閒(x)是[b-1,2b]上的奇函數(shù),
所以[b-1,2b]關(guān)于原點(diǎn)對(duì)稱,即b-1+2b=0,解得b=
1
3

且總有f(-x)=-f(x),即a(-x)2+btan(-3x)=-ax2-btan3x,化簡(jiǎn)得2ax2=0,所以a=0.
所以a+b=0+
1
3
=
1
3

故選B.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性,屬基礎(chǔ)題,難度不大.定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具備奇偶性的必要不充分條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案