2.已知f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),f(x)+xf′(x)>0(其中f′(x)為f(x)的導(dǎo)函數(shù)),則f(x)>0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞)D.(-2,0)∪(0,2)

分析 由當(dāng)x>0時(shí),f(x)+xf′(x)>0,可得g(x)=xf(x)在(0,+∞)上是增函數(shù),結(jié)合函數(shù)f(x)是定義在R上的奇函數(shù),f(2)=0,可得關(guān)于x的不等式f(x)>0的解集.

解答 解:∵函數(shù)f(x)是定義在R上的奇函數(shù),f(-x)=-f(x)
令g(x)=xf(x),
∴g(-x)=g(x)是定義在R上的偶函數(shù),
又∵f(2)=0,
∴f(-2)=-f(2)=0,
∴g(2)=g(-2)=0
又∵當(dāng)x>0時(shí),f(x)+xf′(x)>0,
即當(dāng)x>0時(shí),g′(x)>0,
即g(x)在(0,+∞)上是增函數(shù),在(-∞,0)是減函數(shù),
∴當(dāng)x>0時(shí),f(x)>0,即g(x)>g(2),解得:x>2
∴當(dāng)x<0時(shí),f(x)>0,即g(x)<g(-2),解得:-2<x<0,
∴不等式xf(x)<0的解集為:(-2,0)∪(2,+∞),
故(-2,0)∪(2,+∞)
故選:C.

點(diǎn)評(píng) 本題考查奇偶性與單調(diào)性的綜合,著重考查奇函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等差數(shù)列{an}中,若a3和a8是方程x2-6x+5=0的兩根,則a5+a6的值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)(5x-$\frac{1}{\sqrt{x}}$)n的展開式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M-N=56,則n=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5\sqrt{3}}{2}$(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)對(duì)稱軸和對(duì)稱中心;
(3)f(x)在[${\frac{π}{6}$,$\frac{2π}{3}}$]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5,6,7,8},A⊆U,B⊆U,且滿足A∩B={3},(∁UB)∩A={1,2},(∁UA)∩B={4,5},則∁U(A∪B)=( 。
A.{6,7,8}B.{7,8}C.{5,7,8}D.{5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且$\sqrt{3}$asinB-bcosA=b,
(1)求∠A的大小;
(2)若b+c=4,當(dāng)a取最小值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>0,y>0,且滿足x+$\frac{y}{2}$-$\frac{1}{x}$-$\frac{8}{y}$=8,則2x+y的最小值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AB=AC=3,BC=2,D是BC的中點(diǎn),F(xiàn)是CC1上一點(diǎn),且CF=2,E是AA1上一點(diǎn),且AE=1.
(1)求證:C1E∥平面ADF;
(2)求證:B1F⊥平面ADF;
(3)求三棱錐D-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率是$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)$P(\sqrt{3},\frac{1}{2})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案