【題目】對于數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn

【答案】
(1)解:由Sn+1﹣(n+1)=Sn+an+n,

∴Sn+1﹣Sn=an+2n+1,

∴an+1﹣an=2n+1,

∴a2﹣a1=2×1+1,

a3﹣a2=2×2+1,

a4﹣a3=2×3+1,

an﹣an1=2(n﹣1)+1,

以上各式相加可得:an﹣a1=2×(1+2+3+…+n﹣1)+(n﹣1),

∴an=2× +(n﹣1)+1=n2

∴an=n2,

∵bn+1=3bn+2,即bn+1+1=3(bn+1),

b1+1=2,

∴數(shù)列{bn+1}是以2為首項,以3為公比的等比數(shù)列,

bn+1=2×3n1,

∴bn=2×3n1﹣1;


(2)解:由(1)可知:cn= = = ,

∴Tn=c1+c2+…+cn= + + +…+ ,

Tn= + + +…+ ,

Tn=2+ + + +…+ ,

=2+

= ,

∴Tn=

數(shù)列{cn}的前n項和Tn,Tn=


【解析】(1)由Sn+1﹣Sn=an+2n+1,則an+1﹣an=2n+1,利用“累加法”即可求得an=n2 , 由bn+1+1=3(bn+1),可知數(shù)列{bn+1}是以2為首項,以3為公比的等比數(shù)列,即可求得{bn}的通項公式;(2)由(1)可知:cn= = = ,利用“錯位相減法”即可求得數(shù)列{cn}的前n項和Tn
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了了解小學生的體能情況,抽取某校一個年級的部分學生進行一分鐘跳繩次數(shù)的測試,將數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示.已知圖中從左到右前三個小組的頻率分別為0.1,0.3,0.4,且第一小組的頻數(shù)為5.

(1)求第四小組的頻率;

(2)求參加這次測試的學生的人數(shù);

(3)若一分鐘跳繩次數(shù)在75次以上(含75次)為達標,試估計該年級學生跳繩測試的達標率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市在創(chuàng)建全國旅游城市的活動中,對一塊以O為圓心,R(R為常數(shù),單位:)為半徑的半圓形荒地進行治理改造,其中弓形BCD區(qū)域(陰影部分)種植草坪,OBD區(qū)域用于兒童樂園出租,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55,兒童樂園出租的利潤是每平方米95.

(1)設∠BOD=θ(單位:弧度),θ表示弓形BCD的面積S=f(θ).

(2)如果該市規(guī)劃辦邀請你規(guī)劃這塊土地,如何設計∠BOD的大小才能使總利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+3ax2+bx+a2在x=-1處有極值0,則a的值為 ( )

A. 1 B. 2 C. 1或2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)證明:函數(shù)在區(qū)間上是減函數(shù);

(2)當時,證明:函數(shù)只有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x|﹣mx+1有三個零點,則實數(shù)m的取值范圍是(
A.(0,2)
B.(2,+∞)
C.(﹣∞,﹣2)
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 且S4=4S2 , a2+a4=10.
(1)求數(shù)列{an}通項公式;
(2)若數(shù)列{bn}滿足 + +…+ =1﹣ ,n∈N* , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市有48 000名學生,一次考試后數(shù)學成績服從正態(tài)分布,平均分為80,標準差為10,從理論上講,80分到90分之間有____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且滿足a-2bsin A=0.

(1)求角B的大。

(2)若a+c=5,且a>c,b=,求·的值.

查看答案和解析>>

同步練習冊答案