【題目】已知函數(shù)f(x)=x|x|﹣mx+1有三個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(0,2)
B.(2,+∞)
C.(﹣∞,﹣2)
D.[2,+∞)

【答案】B
【解析】解:由f(x)=x|x|﹣mx+1得x|x|+1=mx,
當(dāng)x=0時(shí),方程不成立,
即x≠0,
則方程等價(jià)為m=|x|+
設(shè)g(x)=|x|+ ,
當(dāng)x<0時(shí),g(x)=﹣x+ 為減函數(shù),
當(dāng)x>0時(shí),g(x)=x+ ,
則g(x)在(0,1)上為減函數(shù),則(1,+∞)上為增函數(shù),
即當(dāng)x=1時(shí),函數(shù)取得極小值同時(shí)也是最小值g(1)=1+1=2,
作出函數(shù)g(x)的圖象如圖:
要使f(x)=x|x|﹣mx+1有三個(gè)零點(diǎn),
則等價(jià)為m=|x|+ 有三個(gè)不同的根,
即y=m與g(x)有三個(gè)不同的交點(diǎn),則由圖象知m>2,
故實(shí)數(shù)m的取值范圍是(2,+∞),
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O過平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長(zhǎng)線于點(diǎn)D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABCA1B1C1的所有棱長(zhǎng)都為2,D為CC1的中點(diǎn).

(1)求證:AB1⊥平面A1BD;

(2)求二面角AA1DB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,點(diǎn)M和N分別為A1B1和BC的中點(diǎn).

(1)求證:AC⊥BM;
(2)求證:MN∥平面ACC1A1
(3)求二面角M﹣BN﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6男4女站成一排,求滿足下列條件的排法共有多少種.(列出算式即可)

(1)任何2名女生都不相鄰,有多少種排法?

(2)男甲不在首位,男乙不在末位,有多少種排法?

(3)男生甲、乙、丙順序一定,有多少種排法?

(4)男甲在男乙的左邊(不一定相鄰)有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 ,當(dāng)t=﹣1時(shí),對(duì)應(yīng)曲線C1上一點(diǎn)A,且點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B.以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為
(1)求A,B兩點(diǎn)的極坐標(biāo);
(2)設(shè)P為曲線C2上的動(dòng)點(diǎn),求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),l是過點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(Ⅱ)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案