3.已知|tanx|=2,x∈($\frac{π}{2}$,π).
(1)求tan2x的值;
(2)求sin(x+$\frac{π}{4}$)的值.

分析 (1)利用x的范圍可知tanx<0,去絕對值可得tanx的值,利用二倍角的正切函數(shù)公式即可計算得解.
(2)利用x的范圍及tanx的值,利用同角三角函數(shù)關(guān)系式可求cosx,sinx的值,利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計算得解.

解答 (本題滿分為14分)
解:(1)∵x∈($\frac{π}{2}$,π),
∴tanx<0,
∵|tanx|=2,
∴tanx=-2或2(舍去),
∴tan2x=$\frac{2tanx}{1-ta{n}^{2}x}$=$\frac{2×(-2)}{1-(-2)^{2}}$=$\frac{4}{3}$…(7分)
(2)∵x∈($\frac{π}{2}$,π),tanx=-2,
∴cosx=-$\sqrt{\frac{1}{1+ta{n}^{2}x}}$=-$\sqrt{\frac{1}{1+(-2)^{2}}}$=-$\frac{\sqrt{5}}{5}$,sinx=$\sqrt{1-co{s}^{2}x}$=$\frac{2\sqrt{5}}{5}$,
∴sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(sinx+cosx)=$\frac{\sqrt{2}}{2}$×($\frac{2\sqrt{5}}{5}$-$\frac{\sqrt{5}}{5}$)=$\frac{\sqrt{10}}{10}$…(14分)

點評 本題主要考查了二倍角的正切函數(shù)公式,同角三角函數(shù)關(guān)系式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在梯形ABCD中,AB∥CD,BC=6,cos∠ABC=-$\frac{1}{3}$.
(Ⅰ)若∠BAC=$\frac{π}{4}$,求AC的長;
(Ⅱ)若BD=9,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我國政府對PM 2.5采用如表標(biāo)準(zhǔn):
PM 2.5日均值m(微克/立方米)空氣質(zhì)量等級
m<35一級
35≤m≤75二級
m>75超標(biāo)
某市環(huán)保局從一年365天的市區(qū)PM 2.5監(jiān)測數(shù)據(jù)中,隨機抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(1)用樣本數(shù)據(jù)來估計全年大概有多少天空氣質(zhì)量超標(biāo)?
(2)求樣本數(shù)據(jù)的中位數(shù);
(3)從樣本數(shù)據(jù)中任取2天的數(shù)據(jù),記ξ為這2天里空氣質(zhì)量達(dá)到一級的天數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中正確的個數(shù)是(  )
①命題“若a=0,則ab=0”的否命題是:“若a=0,則ab≠0”;
②命題p:“?x∈(-∞,0),2x<3x”,則¬p:“?x∈[0,+∞),2x≥3x”;
③對于實數(shù)a,b,“b<a<0”是“$\frac{1}$>$\frac{1}{a}$”成立的充分不必要條件
④如果命題“¬p”與命題“p或q”都是真命題,那么命題q一定是真命題.
⑤設(shè)M為平面內(nèi)任意一點,則A、B、C三點共線的充要條件是存在角α,使$\overrightarrow{MB}$=sin2α•$\overrightarrow{MA}$+cos2α$\overrightarrow{MC}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.log28+lg0.01+ln$\sqrt{e}+{2^{-1+{{log}_2}^3}}+lg\frac{5}{2}+2lg2-{(\frac{1}{2})^{-1}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線$C:\frac{x^2}{9}-\frac{y^2}{9}=1$的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線M的參數(shù)方程為$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓N的方程ρ2-6ρsinθ=-8.求過拋物線M的焦點和圓心N的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a∈R,f(x)=ax2-lnx,g(x)=ex-ax.
(1)當(dāng)曲線y=f(x)在點(1,f(1))處的切線的斜率大于-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)•g(x)>0對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)平面內(nèi)$\frac{2+i}{1-i}$的共軛復(fù)數(shù)所對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案