如果有95%的把握認(rèn)為分類變量A和B有關(guān)系,那么具體計(jì)算出的數(shù)據(jù)

[  ]
A.

K2≥3.841

B.

K2<3.841

C.

K2≥6.635

D.

K2<6.635

答案:A
解析:

P(K2≥3.814)≈0.05.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

淘寶賣家在購買過某商品的所有買家中隨機(jī)選擇男女買家各50位進(jìn)行調(diào)配,他們的評分(保留一位小數(shù))的情況如下:
評價(jià)等級(分) 0-1.0 1.1-2.0 2.1-3.0 3.1-4.0 4.1-5.0
女(人數(shù)) 2 7 9 20 12
男(人數(shù)) 3 9 18 12 8
(I)從評分為1.0分以下的人中隨機(jī)選取2人,則2人都是男性的概率;
(II)現(xiàn)在規(guī)定評分在3.0以下(含3.0)為不喜歡該商品,評分在3.0以上為喜歡該商品,完成表格并幫助賣家判斷是否有95%以上的把握認(rèn)為:買家的性別與是否喜歡該商品之間有關(guān)系.
喜歡該商品 不喜歡該商品 總計(jì)
總計(jì)
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
參考值表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題

某校高三2班有48名學(xué)生進(jìn)行了一場投籃測試,其中男生28人,女生20人.為了了解其投籃成績,甲、乙兩人分別對全班的學(xué)生進(jìn)行編號(1~48號),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

                                                                

(Ⅰ)從甲抽取的樣本數(shù)據(jù)中任取兩名同學(xué)的投籃成績,記“抽到投籃成績優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望;

(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?

(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:

0.15

0.10

0.05

0.010

0.005

0.001

 

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題

某校高三4班有50名學(xué)生進(jìn)行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進(jìn)行編號(1~50號),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

編號

性別

投籃成績

2

90

7

60

12

75

17

80

22

83

27

85

32

75

37

80

42

70

47

60

甲抽取的樣本數(shù)據(jù)

編號

性別

投籃成績

1

95

8

85

10

85

20

70

23

70

28

80

33

60

35

65

43

70

48

60

乙抽取的樣本數(shù)據(jù)

(Ⅰ)觀察抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.

(Ⅱ)請你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?

 

優(yōu)秀

非優(yōu)秀

合計(jì)

 

 

 

 

 

 

合計(jì)

 

 

10

(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:

0.15

0.10

0.05

0.010

0.005

0.001

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如果有95%的把握認(rèn)為分類變量A和B有關(guān)系,那么具體計(jì)算出的數(shù)據(jù)


  1. A.
    K2≥3.841
  2. B.
    K2<3.841
  3. C.
    K2≥6.635
  4. D.
    K2<6.635

查看答案和解析>>

同步練習(xí)冊答案