考點:三角函數(shù)恒等式的證明
專題:三角函數(shù)的求值
分析:轉(zhuǎn)化為證tan2αsin2α=tan2α-sin2α,由三角函數(shù)公式證明左邊=右邊可得.
解答:
證明:要證
=
,
只需證(tanα-sinα)(tanα+sinα)=tan
2αsin
2α,
即證tan
2αsin
2α=tan
2α-sin
2α,
∵tan
2αsin
2α=tan
2α(1-cos
2α)
=tan
2α-tan
2αcos
2α=tan
2α-
cos
2α
=tan
2α-sin
2α=右邊,
∴
=
成立
點評:本題考查三角函數(shù)恒等式的證明,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=x+3,則f′(x)=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
四棱錐P-ABCD中,PA⊥底面ABCD,PA=AB=AD=
CD,AB∥CD,∠ADC=90°.
(1)在側(cè)棱PC上是否存在一點Q,使BQ∥面PAD?說明理由.
(2)求PB與面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知點P(2,1)在拋物線C1:x2=2py(p>0)上,直線l過點Q(0,2)且與拋物線C1交于A、B兩點.
(1)求拋物線C1的方程及弦AB中點M的軌跡C2的方程;
(2)若直線l1、l2分別為C1、C2的切線,且l1∥l2,求l1到l2的最近距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,角A,B,C對應(yīng)邊分別是a,b,c,c=2,∠C=
.
(1)若sinA=2sinB,求△ABC面積;
(2)若sinC+sin(B-A)=2sin2A,求sinA.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn;
(2)設(shè)數(shù)列{an}滿足an=2(2+bn),記Sn為數(shù)列{an}的前n項和,求Sn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某研究性小組有六名同學(xué),這六名同學(xué)排著一排照相,則同學(xué)甲與同學(xué)乙相鄰的排法有多少種?若從六名同學(xué)中選四人參加班級4×100接力比賽,則同學(xué)丙不跑第一棒的安排方法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知等比數(shù)列{a
n}中,a
1=
,公比q=
,S
n為{a
n}的前n項和
(Ⅰ)求S
n(Ⅱ)設(shè)b
n=log
3a
1+log
3a
2+…+log
3a
n,求數(shù)列{b
n}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某人擺一個攤位賣小商品,一周內(nèi)出攤天數(shù)x與盈利y(百元),之間的一組數(shù)據(jù)關(guān)系見表:
已知
5 |
|
i=1 |
x
i2=90,
5 |
|
i=1 |
x
iy
i=112.3,
(Ⅰ)在如圖坐標(biāo)系中畫出散點圖;
(Ⅱ)計算
,
,并求出線性回歸方程;
(Ⅲ)在第(Ⅱ)問條件下,估計該攤主每周7天要是天天出攤,盈利為多少?
查看答案和解析>>