在△ABC中,若sin2C=sin2A+sin2B,則△ABC為(  )
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等邊三角形
考點(diǎn):三角形的形狀判斷
專題:解三角形
分析:在△ABC中,依題意,利用正弦定理可得c2=a2+b2,從而可判斷三角形ABC的形狀
解答: 解:在△ABC中,∵sin2C=sin2A+sin2B,
∴由正弦定理得:c2=a2+b2,
∴△ABC為直角三角形,
故選:B.
點(diǎn)評:本題考查三角形的形狀判斷,著重考查正弦定理與勾股定理的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)
425
625
;     
(2)[-2×(
3
7
)0]2×[(-2)3]
4
3
;
(3)已知x+x-1=3,求
x
1
2
+x-
1
2
x2+x-2+3
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=x2-x,則當(dāng)x≥0時,函數(shù)f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
lnx,x<2
ex-2,x≥2
,則f[f(2)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,函數(shù)y=
x+4
2-x-4
的定義域?yàn)榧螦,B={x|-3≤x-1<2}.
(Ⅰ)求A∩B,(∁UA)∪(∁UB);
(Ⅱ)若集合M={x|x≥k+1或x≤k-1},且A∩B⊆M,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,直線2x-y-1=0的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={1,2},集合B={1,3,5},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+ax-lnx.
(1)若a=1,試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)令g(x)=
f(x)
ex
,若函數(shù)g(x)在區(qū)間(0,1]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我校在2014年11月9日上午隆重舉行建90周年校慶祝大會,有5位過去同班親密的老校友,因?yàn)楫厴I(yè)后多年不相見,他們先通過電話聯(lián)系,每人各自帶來1張自己家庭合影相片,利用校慶祝大會相聚談?wù)劯髯约彝サ那闆r,會后離別時,為了作為紀(jì)念,每人又帶回1張不是自己家庭合影相片,則所有不同帶法共有
 
種(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案