考點:對數(shù)函數(shù)的單調(diào)性與特殊點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的定義域,利用對數(shù)的運算和分子有理化化簡f(-x),判斷出函數(shù)的奇偶性,再由對數(shù)函數(shù)的單調(diào)性判斷出此函數(shù)的單調(diào)性,根據(jù)偶函數(shù)的性質(zhì)、單調(diào)性,將不等式轉(zhuǎn)化為關(guān)于a的不等式,最后求出a的范圍.
解答:
解:由題意得,函數(shù)f(x)的定義域是R,
且f(-x)=-xlg(-x+
)=-xlg
=xlg(x+
)=f(x),
所以函數(shù)f(x)是偶函數(shù),
由對數(shù)函數(shù)的單調(diào)性知,當(dāng)x>0時,函數(shù)f(x)是增函數(shù),
所以當(dāng) x<0時,函數(shù)f(x)是減函數(shù),
由f(2-a)<f(-1)得,|2-a|<|-1|=1
即-1<2-a<1,解得1<a<3,
所以a的取值范圍是(1,3),
故答案為:(1,3).
點評:本題考查了函數(shù)的奇偶性、單調(diào)性的判斷,對數(shù)函數(shù)的單調(diào)性,以及對數(shù)的運算,屬于中檔題.