分析 (1)因?yàn)椤螪AB=60°,AB=2AD,由余弦定理得BD=$\sqrt{3}AD$,利用勾股定理證明BD⊥AD,根據(jù)PD⊥底面ABCD,易證BD⊥PD,根據(jù)線面垂直的判定定理和性質(zhì)定理,可證PA⊥BD;
(2)利用等積法,得到VD-PBC=BP-BCD,分別求出對(duì)應(yīng)的底面積和高,解方程即可得到結(jié)論.
解答 證明:(1)∵∠DAB=60°,AB=2AD=4,
∴余弦定理得BD=$\sqrt{3}AD$=2$\sqrt{3}$,
從而B(niǎo)D2+AD2=AB2,故BD⊥AD,
又PD⊥底面ABCD,可得BD⊥PD,
∴BD⊥平面PAD.
故PA⊥BD.
(2)∵BD⊥AD,
∴△BCD是直角三角形,
∵BD⊥AD,PD⊥底面ABCD,
∴PD⊥BC,BC⊥BD,
則BC⊥平面PBD,
∴BC⊥PB,
即△PBC是直角三角形,
∵AB=2AD=2PD=4,
∴CD=4,AD=2,PD=2,PB=$\sqrt{P{D}^{2}+B{D}^{2}}$=$\sqrt{{2}^{2}+(2\sqrt{3})^{2}}=\sqrt{4+12}=\sqrt{16}$=4
則S△BCD=$\frac{1}{2}$BD•BC=$\frac{1}{2}×2\sqrt{3}×2$=2$\sqrt{3}$,
S△PBC=$\frac{1}{2}$PB•BC=$\frac{1}{2}×4×2$=4,
設(shè)三棱錐D-PBC的高為h,
則VD-PBC=BP-BCD,
即$\frac{1}{3}$PD•S△BCD=$\frac{1}{3}$hS△PBC,
即2×$2\sqrt{3}$=4h,
則h=$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查線面垂直的性質(zhì)定理和判定定理,棱錐高的求解,利用體積相等,建立方程關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 360 | B. | 180 | C. | 90 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角 | B. | 銳角 | C. | 鈍角 | D. | 任意 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 大前提錯(cuò)誤 | B. | 小前提錯(cuò)誤 | C. | 推理形式錯(cuò)誤 | D. | 沒(méi)有錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | -$\frac{π}{3}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com