邊長為5cm的正方形EFGH是圓柱的軸截面,則從E點(diǎn)沿圓柱的側(cè)面到相對頂點(diǎn)G的最短距離是( 。
A、10
B、
5
2
π2+4
C、5
2
D、5
π2+1
考點(diǎn):多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:空間位置關(guān)系與距離
分析:由題意可以從E點(diǎn)沿圓柱的側(cè)面到相對頂點(diǎn)G的最短距離為圓柱側(cè)面展開圖一個頂點(diǎn)到對邊中點(diǎn)的距離,利用勾股定理就可以求出其值.
解答: 解:由題意,從E點(diǎn)沿圓柱的側(cè)面到相對頂點(diǎn)G的最短距離即為圓柱側(cè)面展開圖一個頂點(diǎn)到對邊中點(diǎn)的距離,如圖

∵圓柱的軸截面是邊長為5cm的正方形,∴EF=
2
cm,EG=
52+(
2
)2
=
5
2
4+π2
(cm);
故選B.
點(diǎn)評:本題考查了空間距離最短的問題,關(guān)鍵是將圓柱展開,轉(zhuǎn)化為一個平面內(nèi)的線段最短問題解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點(diǎn)在拋物線y2=8x的準(zhǔn)線上,且過點(diǎn)M(
3
,1)

(1)求橢圓C的方程;
(2)設(shè)點(diǎn)F(-2,0),T為直線x=-3上任意一點(diǎn),過F作直線l⊥TF交橢圓C于P、Q兩點(diǎn).
①證明:OT經(jīng)過線段PQ中點(diǎn)(O為坐標(biāo)原點(diǎn));②當(dāng)
|TF|
|PQ|
最小時,求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由半橢圓x2+
y2
a
=1(y≤0,a>0)和部分拋物線y=x2-1(y≥0)合成的曲線C經(jīng)過點(diǎn)(
1
2
,-
3
).
(1)求a的值;
(2)設(shè)A(1,0),B(-1,0),過A且斜率為k的直線l與曲線C相交于P、A、Q三點(diǎn),問是否存在實(shí)數(shù)k使得∠QBP=90°?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)上最高點(diǎn)為(2,
2
),該最高點(diǎn)到相鄰的最低點(diǎn)間曲線與x軸交于一點(diǎn)(6,0).求函數(shù)解析式,并求函數(shù)在x∈[-6,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與圓C2:x2+y2=b2,若在橢圓C1上不存在點(diǎn)P,使得由點(diǎn)P所作的圓C2的兩條切線互相垂直,則橢圓C1的離心率的取值范圍是(  )
A、(0,
2
2
B、(0,
3
2
C、[
2
2
,1)
D、[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足2an+1+an=0,a1=-2,則數(shù)列{an}的前10項(xiàng)和S10為( 。
A、
4
3
(210-1)
B、
4
3
(210+1)
C、
4
3
(2-10-1)
D、
4
3
(2-10+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,在同一個坐標(biāo)系中,an=f(n)及Sn=g(n)的部分圖象如圖所示,則( 。
A、當(dāng)n=4時,Sn取得最大值
B、當(dāng)n=3時,Sn取得最大值
C、當(dāng)n=4時,Sn取得最小值
D、當(dāng)n=3時,Sn取得最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,an+1-an=3×22n-1,數(shù)列{bn}滿足bn=log2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{
1
bnbn+1
}
的前n項(xiàng)和為Tn,若t≥Tn對任意的n∈N+恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對應(yīng)邊分別為a、b、c且
cosC
cosB
=
3a-c
b

(Ⅰ)求sinB
(Ⅱ)若b=4
2
,求△ABC周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案