7.已知f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),則數(shù)列{an}的通項公式為(  )
A.an=n-1B.an=nC.an=n+1D.an=n2

分析 由f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1),“倒敘相加”即可得出.

解答 解:∵f(x)+f(1-x)=2,an=f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1),
∴2an=[f(0)+f(1)]+[f($\frac{1}{n}$)+f($\frac{n-1}{n}$)]+…+[f(1)+f(0)]=2(n+1),
∴an=n+1.
故選:C.

點評 本題考查了數(shù)列“倒敘相加”求和,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線x-2y+3=0與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$相交于A,B兩點,且P(-1,1)恰好為AB中點,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定義在R上的函數(shù)f(x),g(x)滿足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,若有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\},n∈{N^*}$的前n項和為$\frac{255}{256}$,則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(Ⅰ)設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,計算f(f(-4))的值;
(Ⅱ)計算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$;
(Ⅲ)計算:${(\frac{9}{16})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列四組函數(shù)中,相等的兩個函數(shù)是(  )
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2lgx,g(x)=lgx2C.f(x)=($\sqrt{x}$)2,g(x)=xD.f(x)=x,g(t)=t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x=1”是“x2-1=0”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列關(guān)于概率的理解中正確的命題的個數(shù)是
①擲10次硬幣出現(xiàn)4次正面,所以擲硬幣出現(xiàn)正面的概率是0.4;
②某種體育彩票的中獎概率為$\frac{1}{1000}$,則買1000張這種彩票一定能中獎;
③孝感氣象臺預(yù)報明天孝感降雨的概率為70%是指明天孝感有70%的區(qū)域下雨,30%的區(qū)域不下雨.(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$y=\sqrt{1-{{(x-1)}^2}},x∈[1,2]$,對于滿足1<x1<x2<2的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;            ②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0;      ④(x2-x1)[f(x2)-f(x1)]>0
其中正確結(jié)論有②③(寫上所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)滿足f(-x)=-f(x),并且當x≥0時,f(x)=2x+a,則f(-2)=-4;當x<0時,f(x)=-2-x

查看答案和解析>>

同步練習(xí)冊答案