橢圓的一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成等邊三角形,則橢圓的離心率( )
試題分析:由題意,設(shè)橢圓方程
,焦距為
,由題意,
,所以離心率
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知兩點(diǎn)
及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖,動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
與橢圓
有公共焦點(diǎn)
,且橢圓過點(diǎn)
.
(1)求橢圓方程;
(2)點(diǎn)
、
是橢圓的上下頂點(diǎn),點(diǎn)
為右頂點(diǎn),記過點(diǎn)
、
、
的圓為⊙
,過點(diǎn)
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)
、
,試問直線
是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系
中,已知橢圓
的左焦點(diǎn)為
,且橢圓
的離心率
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的上下頂點(diǎn)分別為
,
是橢圓
上異于
的任一點(diǎn),直線
分別交
軸于點(diǎn)
,證明:
為定值,并求出該定值;
(3)在橢圓
上,是否存在點(diǎn)
,使得直線
與圓
相交于不同的兩點(diǎn)
,且
的面積最大?若存在,求出點(diǎn)
的坐標(biāo)及對(duì)應(yīng)的
的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖示:已知拋物線
的焦點(diǎn)為
,過點(diǎn)
作直線
交拋物線
于
、
兩點(diǎn),經(jīng)過
、
兩點(diǎn)分別作拋物線
的切線
、
,切線
與
相交于點(diǎn)
.
(1)當(dāng)點(diǎn)
在第二象限,且到準(zhǔn)線距離為
時(shí),求
;
(2)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且過點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓
相切的直線
交拋物線于不同的兩點(diǎn)
若拋物線上一點(diǎn)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
內(nèi)的一點(diǎn)
,過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在的直線方程( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線
過橢圓
的左焦點(diǎn)F,且與橢圓相交于P、Q兩點(diǎn),M為PQ的中點(diǎn),O為原點(diǎn).若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為
.
查看答案和解析>>