【題目】某幼兒園為訓練孩子的數字運算能力,在一個盒子里裝有標號為1,2,3,4,5的卡片各兩張,讓孩子從盒子里任取3張卡片,按卡片上的最大數字的9倍計分,每張卡片被取出的可能性都相等,用X表示取出的3張卡片上的最大數字
(1)求取出的3張卡片上的數字互不相同的概率;
(2)求隨機變量X的分布列及數學期望;
(3)若孩子取出的卡片的計分超過30分,就得到獎勵,求孩子得到獎勵的概率.
【答案】
(1)解:“一次取出的3張卡片上的數字互不相同”的事件記為A
則
(2)解:變量X的可能取值為2,3,4,5
所以分布列為
X | 2 | 3 | 4 | 5 |
P |
從而E(X)=2× +3× +4× +5× =
(3)解:“一次取卡片所得計分超過30分”的事件記為B
∴
∴孩子得到獎勵的概率為
【解析】(1)記事件:“一次取出的3張卡片上的數字互不相同的事件記為A”,利用古典概型的概率公式可得到結果.(2)得到隨機變量X有可能的取值,計算出各值對應的概率,列表寫出分布列,代入公式得到數學期望.(3)記事件“一次取卡片所得計分超過30分”的事件記為B,看出事件所包含的幾種情況,根據上面的分布列求和即可.
科目:高中數學 來源: 題型:
【題目】某品牌新款夏裝即將上市,為了對夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數據:
連鎖店 | A店 | B店 | C店 | |||
售價x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
銷售量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家連鎖店分別的平均售價和平均銷量為散點,求出售價與銷量的回歸直線方程 ;
(2)在大量投入市場后,銷售量與單價仍然服從(1)中的關系,且該夏裝成本價為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價應定為多少元(保留整數)? .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點M是棱BC的中點,且DM=2 .
(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求點B到平面DOM的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面是60名男生每分鐘脈搏跳動次數的頻率分布表.
分組 | 頻數 | 頻率 | |
[51.5,57.5) | 4 | 0.067 | 0.011 |
[57.5,63.5) | 6 | 0.1 | 0.017 |
[63.5,69.5) | 11 | 0.183 | 0.031 |
[69.5,75.5) | 20 | 0.333 | 0.056 |
[75.5,81.5) | 11 | 0.183 | 0.031 |
[81.5,87.5) | 5 | 0.083 | 0.014 |
[87.5,93.5] | 3 | 0.05 | 0.008 |
(1)作出其頻率分布直方圖;
(2)根據直方圖的各組中值估計總體平均數;
(3)估計每分鐘脈搏跳動次數的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a,b∈M. (Ⅰ)證明:| a+ b|< ;
(Ⅱ)比較|1﹣4ab|與2|a﹣b|的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標的概率分別是 和 .假設兩人射擊是否擊中目標相互之間沒有影響;每人各次射擊是否擊中目標相互之間也沒有影響.
(1)求甲射擊4次,至少有1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數.
(1)求實數k的值;
(2)求函數g(x)的定義域;
(3)若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com