解:(Ⅰ)當(dāng)x≥0時(shí),f(x)=x
2-2x.
設(shè)x<0可得-x>0,則f(-x)=(-x)
2-2(-x)=x
2+2x
∵函數(shù)f(x)為奇函數(shù),則f(x)=-f(-x)=-x
2-2x
∴
函數(shù)的圖象如圖所示
(II)由g(x)=f(x)-k=0可得f(x)=k
結(jié)合函數(shù)的圖象可知
①當(dāng)k<-1或k>1時(shí),y=k與y=f(x)的圖象有1個(gè)交點(diǎn),即g(x)=f(x)-k有1個(gè)零點(diǎn)
②當(dāng)k=-1或k=1時(shí),y=k與y=f(x)有2個(gè)交點(diǎn),即g(x)=f(x)-k有2個(gè)零點(diǎn)
③當(dāng)-1<k<1時(shí),y=k與y=f(x)有3個(gè)交點(diǎn),即g(x)=f(x)-k有3個(gè)零點(diǎn)
分析:(Ⅰ)先設(shè)x<0可得-x>0,則f(-x)=(-x)
2-2(-x)=x
2+2x,由函數(shù)f(x)為奇函數(shù)可得f(x)=-f(-x),可求,結(jié)合二次函數(shù)的圖象可作出f(x)的圖象
(II)由g(x)=f(x)-k=0可得f(x)=k,結(jié)合函數(shù)的圖象可,要求g(x)=f(x)-k的零點(diǎn)個(gè)數(shù),只要結(jié)合函數(shù)的圖象,判斷y=f(x)與y=k的交點(diǎn)個(gè)數(shù)
點(diǎn)評(píng):本題主要考查了利用奇函數(shù)的性質(zhì)求解函數(shù)的解析式,函數(shù)的零點(diǎn)個(gè)數(shù)的判斷,體現(xiàn)了數(shù)形結(jié)合思想的應(yīng)用