下列函數(shù)中在區(qū)間(1,2)上是增函數(shù)的是(  )
A、y=-2x
B、y=2-x
C、y=
1
x
D、y=x2+2x+1
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別對A,B,C,D進(jìn)行判斷,從而得到答案.
解答: 解:對于A:y=-2x是減函數(shù),
對于B:y=2-x是減函數(shù),
對于C:y=
1
x
是減函數(shù),
對于D:y=x2+2x+1=(x+1)2,在(-1,+∞)遞增,
∴函數(shù)在(1,2)遞增,
故選:D.
點評:本題考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+y)=f(x)•f(y),且f(2)=4,則f(8)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域 為R,當(dāng)x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y),且f(2)=4
(Ⅰ)求f(0),f(1)的值;
(Ⅱ)證明f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的長軸為2,離心率為
1
2
,則其短半軸為( 。
A、
2
2
B、
2
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
+
y2
k
=1的離心率e∈(1,2),則k的取值范圍是(  )
A、(-10,0)
B、(-12,0)
C、(-3,0)
D、(-60,-12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)(θ為參數(shù)).
(1)求圓C的直角坐標(biāo)方程.
(2)判斷直線L和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A和B是兩個命題,如果A是B的充分條件,那么B是A的
 
條件,¬A是¬B的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足2Sn=3an-4n+3
(1)用an表示an+1
(2)設(shè)bn=an+2,證明{bn}成等比數(shù)列;
(3)設(shè)cn=lo
g
b2n-1
3
,對任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使
1
ck
,
1
cp
1
cr
成等差數(shù)列?若存在,用k分別表示p和r(只需要求出一組即可);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤1且z=2x+y
y≥-1
的最大值和最小值分別為M和m,則M-m=( 。
A、8B、7C、6D、5

查看答案和解析>>

同步練習(xí)冊答案