10.設(shè)直線l 的傾斜角α滿足α∈($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$),則直線l 的斜率k 的取值范圍為(-∞,-1)∪(1,+∞).

分析 由已知利用正切函數(shù)的性質(zhì),得到直線l的斜率k的取值范圍.

解答 解:∵直線l的傾斜角為α,且α∈($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$),
∴直線l的斜率k的取值范圍是:k<-1或k>1,
即直線l的斜率k的取值范圍是(-∞,-1)∪(1,+∞).
故答案為(-∞,-1)∪(1,+∞).

點(diǎn)評(píng) 本題考查直線的斜率的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要注意正切函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{2x}{{{x^2}+1}}$,則下列說法正確的是(  )
A.函數(shù)f(x)在(0,+∞)上有最小值B.函數(shù)f(x)在(0,+∞)上沒有最大值
C.函數(shù)f(x)在R上沒有極小值D.函數(shù)f(x)在R上有極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{p}{2}{x^2}-lnx({p∈R})$.
(1)當(dāng)p=2時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)當(dāng)p>1時(shí),求證:$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知三棱柱ABC-A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.
(1)求證:AB⊥平面AB1C;  
(2)求多面體CAA1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線y=kx+1(k>0)與雙曲線x2-$\frac{{y}^{2}}{2}$=1有且只有一個(gè)交點(diǎn),則k的值是$\sqrt{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知{an}是首項(xiàng)為1的等差數(shù)列,{bn}是首項(xiàng)為2且各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足a2+a3=b3,5+b2=3a2
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=(-1)nanan+1,求數(shù)列{cn}的前2n項(xiàng)和T2n;
(3)設(shè){bn}的前n項(xiàng)和為Sn,是否存在正整數(shù)n,t,使得$\frac{{S}_{n}-t_{n}}{{S}_{n+1}-t_{n+1}}$<$\frac{1}{16}$成立?若存在,求出正整數(shù)n,t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題:“?x∈R,x2+mx+2≤0”為假命題,是命題|m-1|<2的( 。
A.充分不必要條件B.必要非充分條件C.充要條件D.都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx+$\frac{1}{x}$,曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與$f(\frac{1}{x})$的大小;
(3)證明:x>0時(shí),xexlnx+ex>x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C分別為坐標(biāo)軸上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以點(diǎn)A,B,C,P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案