分析 (1)求導數(shù),利用導數(shù)的幾何意義,即可求曲線y=f(x)在(1,f(1))處的切線方程;
(2)令$g(x)=({p-1})x-f(x)=({p-1})x-\frac{p}{2}{x^2}+lnx$,求出$g{(x)_{max}}=\frac{1}{2}p-1$.設$h(p)=\frac{{({2p-1})({\frac{1}{2}p-1})}}{{{e^{p-3}}}}({p>1})$,確定單調性,即可證明結論.
解答 解:(1)依題意,f(x)=x2-lnx,故$f'(x)=2x-\frac{1}{x}$,因為f'(1)=1,f(1)=1,故所求切線方程為y=x.
(2)∵p>1,令$g(x)=({p-1})x-f(x)=({p-1})x-\frac{p}{2}{x^2}+lnx$,
故$g'(x)=p-1-px+\frac{1}{x}=\frac{{({px+1})({1-x})}}{x}$,可得函數(shù)g(x)的單調遞增區(qū)間為(0,1),單調遞減區(qū)間為(1,+∞),
∴g(x)在x=1時取得的極大值,并且也是最大值,即$g{(x)_{max}}=\frac{1}{2}p-1$.
又2p-1>0,∴$({2p-1})[{({p-1})-\frac{p}{2}{x^2}+lnx}]≤({2p-1})({\frac{1}{2}p-1})$.
設$h(p)=\frac{{({2p-1})({\frac{1}{2}p-1})}}{{{e^{p-3}}}}({p>1})$,則$h'(p)=-\frac{{({2{p^2}-9p+7})}}{{2{e^{p-3}}}}=-\frac{{({p-1})({2p-7})}}{{2{e^{p-3}}}}$,
所以h(p)的單調遞增區(qū)間為$({1,\frac{7}{2}})$,單調遞減區(qū)間為$({\frac{7}{2},+∞})$,
所以$h(p)≤h({\frac{7}{2}})=\frac{{6×\frac{3}{4}}}{{{e^{\frac{1}{2}}}}}=\frac{9}{{2\sqrt{e}}}$,
∵$2\sqrt{e}>3$,∴$\frac{9}{{2\sqrt{e}}}<\frac{9}{3}=3$,∴h(p)<3,
又∵ep-3>0,∴$({2p-1})[{({p-1})x-\frac{p}{2}{x^2}+lnx}]<3{e^{p-3}}$,即$({p-1})x-f(x)<\frac{{3{e^{p-3}}}}{2p-1}$.
點評 本題考查導數(shù)知識的運用,考查不等式的證明,考查學生分析解決問題的能力,正確求導是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | “x>2”是“x2-2x>0”成立的必要條件 | |
B. | 命題“若x2=1,則x=1”的逆否命題為假命題 | |
C. | 命題“p:?x∈R,x2≥0”的否定形式為“¬p:?x0∈R,x02≥0” | |
D. | .已知向量$\overrightarrow a,\overrightarrow b$,則“$\overrightarrow a∥\overrightarrow b$”是“$\overrightarrow a+\overrightarrow b=\overrightarrow 0$”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{\frac{3}{2},5}]$ | B. | $[{\frac{2}{3},5}]$ | C. | $[{\frac{3}{2},7}]$ | D. | $[{\frac{2}{3},7}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com