分析 (1)直線l的方程為(2-m)x+(2m+1)y+3m+4=0,其中m∈R.化為:m(-x+2y+3)+(2x+y+4)=0,令$\left\{\begin{array}{l}{-x+2y+3=0}\\{2x+y+4=0}\end{array}\right.$,解出即可得出直線l經(jīng)過定點.
(2)當(dāng)m變化時,PQ⊥直線l時,點P(3,1)到直線l的距離的最大.
(3)由于直線l經(jīng)過定點Q(-1,-2).直線l的斜率k存在且k≠0,因此可設(shè)直線l的方程為y+2=k(x+1),可得與x軸、y軸的負(fù)半軸交于A($\frac{2-k}{k}$,0),B(0,k-2)兩點,$\frac{2-k}{k}$<0,k-2<0,解得k<0.可得S△OAB=$\frac{1}{2}$×$\frac{k-2}{k}$×(2-k)=$\frac{1}{2}$$[4+(-k+\frac{4}{-k})]$,利用基本不等式的性質(zhì)即可得出.
解答 (1)證明:直線l的方程為(2-m)x+(2m+1)y+3m+4=0,其中m∈R.
化為:m(-x+2y+3)+(2x+y+4)=0,令$\left\{\begin{array}{l}{-x+2y+3=0}\\{2x+y+4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,
則直線l經(jīng)過定點Q(-1,-2).
(2)解:當(dāng)m變化時,PQ⊥直線l時,
點P(3,1)到直線l的距離的最大=$\sqrt{(-1-3)^{2}+(-2-1)^{2}}$=5.
(3)解:由于直線l經(jīng)過定點Q(-1,-2).直線l的斜率k存在且k≠0,
因此可設(shè)直線l的方程為y+2=k(x+1),
可得與x軸、y軸的負(fù)半軸交于A($\frac{2-k}{k}$,0),B(0,k-2)兩點,
$\frac{2-k}{k}$<0,k-2<0,解得k<0.
∴∴S△OAB=$\frac{1}{2}$×$\frac{k-2}{k}$×(2-k)=$\frac{1}{2}$$[4+(-k+\frac{4}{-k})]$≥2+$\frac{1}{2}×2\sqrt{(-k)•\frac{4}{-k}}$=4,當(dāng)且僅當(dāng)k=-2時取等號.
此時直線l的方程為:y+2=-2(x+1),化為:2x+y+4=0.
點評 本題考查了直線系、點斜式、基本不等式的性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-1 | B. | 1 | C. | -1 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是周期函數(shù),周期為π | B. | 在$[{-\frac{π}{2},-\frac{π}{4}}]$上是單調(diào)遞增的 | ||
C. | 在$[{-\frac{π}{3},\frac{7π}{6}}]$上最大值為$\sqrt{3}$ | D. | 關(guān)于直線$x=\frac{π}{4}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)<f(b)<f(c) | B. | f(b)<f(a)<f(c) | C. | f(c)<f(a)<f(b) | D. | f(c)<f(b)<f(a) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com