12.若偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,a=log23,b=log45,$c={2^{\frac{3}{2}}}$,則f(a),f(b),f(c)滿足( 。
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

分析 利用函數(shù)的奇偶性和單調(diào)性,可得f(x)在[0,+∞)上單調(diào)遞增.再結(jié)合 c>a>b,則有f(c)、f(a)、f(b)之間的大小關(guān)系.

解答 解:∵偶函數(shù)f(x)在(-∞,0]上單調(diào)遞減,∴f(x)在[0,+∞)上單調(diào)遞增.
∵a=log23,b=log45,$c={2^{\frac{3}{2}}}$=$\sqrt{8}$>2,∴c>a>b,則有f(c)>f(a)>f(b),
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的方程為(2-m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求證:直線l恒過定點(diǎn);
(2)當(dāng)m變化時(shí),求點(diǎn)P(3,1)到直線l的距離的最大值;
(3)若直線l分別與x軸、y軸的負(fù)半軸交于A,B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{a-1}{2}$x2+ax+a(a∈R)的導(dǎo)數(shù)為f'(x),若對(duì)任意的x∈[2,3]都有f'(x)≤f(x),則a的取值范圍是( 。
A.$[{\frac{2}{3},+∞})$B.$[{1,\frac{5}{3}}]$C.$[{\frac{1}{3},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.通過隨機(jī)詢問某校110名高中學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下列聯(lián)表:
 總計(jì)
看營養(yǎng)說明503080
不看營養(yǎng)說明102030
總計(jì)6050110
(1)從這50名女生中按是否看營養(yǎng)說明分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)從(1)中的5名女生中隨機(jī)選取2名進(jìn)行深度訪談,求選到看與不看營養(yǎng)說明的女生各1名的概率;
(3)根據(jù)以上列聯(lián)表,問能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“性別與在購買食物時(shí)看營養(yǎng)說明有關(guān)系”?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{\sqrt{x+1}}}{x}$則函數(shù)的定義域?yàn)閧x|x≥-1且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$x∈(-\frac{π}{2},\frac{π}{2})$,函數(shù)y=f(x)滿足:f′(x)cosx-f(x)sinx=ex,f(0)=2,令$F(x)=f(x)-\frac{1}{cosx}+1$,若方程$F(x)+{(x+\frac{π}{4})^2}-m=0$在$x∈(-\frac{π}{2},\frac{π}{2})$有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)m的范圍為($1+\sqrt{2}{e}^{-\frac{π}{4}},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,則$-2\overrightarrow a+3\overrightarrow b$的坐標(biāo)是( 。
A.(-6,7)B.(-6,-7)C.(-6,1)D.(-6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=$\left\{\begin{array}{l}sinx,0≤x≤π\(zhòng)\ cosx,-π≤x≤0.\end{array}$則$\int{\begin{array}{l}π\(zhòng)\{-π}\end{array}}$f(x)dx=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.專家研究表明,PM2.5是霾的主要成份,在研究PM2.5形成原因時(shí),某研究人員研究了PM2.5與燃燒排放的CO2、NO2、CO、O2等物質(zhì)的相關(guān)關(guān)系.下圖是某地某月PM2.5與CO和O2相關(guān)性的散點(diǎn)圖.

(Ⅰ)根據(jù)上面散點(diǎn)圖,請(qǐng)你就CO,O2對(duì)PM2.5的影響關(guān)系做出初步評(píng)價(jià);
(Ⅱ)根據(jù)有關(guān)規(guī)定,當(dāng)CO排放量低于100μg/m2時(shí)CO排放量達(dá)標(biāo),反之為CO排放量超標(biāo);當(dāng)PM2.5值大于200μg/m2時(shí)霧霾嚴(yán)重,反之霧霾不嚴(yán)重.根據(jù)PM2.5與CO相關(guān)性的散點(diǎn)圖填寫好下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“霧霾是否嚴(yán)重與排放量有關(guān)”:
霧霾不嚴(yán)重霧霾嚴(yán)重總計(jì)
CO排放量達(dá)標(biāo)
CO排放量超標(biāo)
總計(jì)
(Ⅲ)我們知道霧霾對(duì)交通影響較大.某市交通部門發(fā)現(xiàn),在一個(gè)月內(nèi),當(dāng)CO排放量分別是60,120,180時(shí),某路口的交通流量(單位:萬輛)一次是800,600,200,而在一個(gè)月內(nèi),CO排放量是60,120,180的概率一次是p,$\frac{p}{2}$,q($\frac{1}{2}<p<1$),求該路口一個(gè)月的交通流量期望值的取值范圍.
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案